Bài tập 1.25 trang 25 SGK Toán 9 tập 1 thuộc chương 1: Hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 1.25 trang 25 SGK Toán 9 tập 1 - Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tìm số tự nhiên N có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số của số N thì được một số lớn hơn số 2N là 585 đơn vị, và nếu viết hai chữ số của số N theo thứ tự ngược lại thì được một số nhỏ hơn số N là 18 đơn vị.
Đề bài
Tìm số tự nhiên N có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số của số N thì được một số lớn hơn số 2N là 585 đơn vị, và nếu viết hai chữ số của số N theo thứ tự ngược lại thì được một số nhỏ hơn số N là 18 đơn vị.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Số tự nhiên N có hai chữ số nên N có dạng \(\overline {ab} \left( {0 < a \le 9;0 \le b \le 9;a,b \in \mathbb{N}} \right)\) và \(\overline {ab} = 10a + b.\)
Tương tự với số mới khi thêm số 3 vào giữa a và b thì ta có số mới \(\overline {a3b} \) và \(\overline {a3b} = 100a + 30 + b.\)
Từ đó ta biểu thị mối liên hệ giữa các số để ra hệ phương trình chứa a và b, giải hệ ta sẽ tìm được số N.
Lời giải chi tiết
Số N cần tìm có dạng \(\overline {ab} \left( {0 < a \le 9;0 \le b \le 9;a,b \in \mathbb{N}} \right).\)
Viết thêm chữ số 3 vào giữa hai chữ số của số N thì ta được số mới có dạng \(\overline {a3b} \)
Thì được một số lớn hơn số 2N là 585 đơn vị nên ta có phương trình \(\overline {a3b} - 2.\overline {ab} = 585\) suy ra \(100a + 30 + b - 2.\left( {10a + b} \right) = 585\) hay \(80a - b = 555.\)
Viết hai chữ số của số N theo thứ tự ngược lại thì ta được số có dạng \(\overline {ba} \)
Thì được một số nhỏ hơn số N là 18 đơn vị nên ta có phương trình \(\overline {ab} - \overline {ba} = 18\) suy ra \(10a + b - \left( {10b + a} \right) = 18\) hay \(a - b = 2.\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}80a - b = 555\\a - b = 2\end{array} \right.\)
Trừ từng vế của hai phương trình ta có:
\(\left( {80a - b} \right) - \left( {a - b} \right) = 555 - 2\)
hay \(79a = 553\)
nên \(a = 7\left( {t/m} \right).\)
Với \(a = 7\) thay vào phương trình thứ hai ta được \(b = 5\left( {t/m} \right).\)
Vậy N = 75.
Bài tập 1.25 trang 25 SGK Toán 9 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 9, giúp học sinh củng cố kiến thức về hàm số bậc nhất và ứng dụng vào giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Cho hàm số y = (m-1)x + 3. Tìm giá trị của m để hàm số đồng biến.
Để hàm số y = (m-1)x + 3 đồng biến, hệ số của x phải lớn hơn 0. Tức là:
m - 1 > 0
Suy ra:
m > 1
Vậy, để hàm số y = (m-1)x + 3 đồng biến thì m > 1.
Bài toán này yêu cầu học sinh nắm vững điều kiện để một hàm số bậc nhất là hàm số đồng biến. Cụ thể, hàm số y = ax + b đồng biến khi và chỉ khi a > 0. Trong bài toán này, a = m - 1, do đó, để hàm số đồng biến thì m - 1 > 0, suy ra m > 1.
Ngoài bài tập 1.25, còn rất nhiều bài tập tương tự liên quan đến hàm số bậc nhất. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:
Ví dụ 1: Cho hàm số y = (2k-1)x + 5. Tìm giá trị của k để hàm số nghịch biến.
Lời giải: Để hàm số nghịch biến, hệ số của x phải nhỏ hơn 0. Tức là:
2k - 1 < 0
Suy ra:
2k < 1
Suy ra:
k < 1/2
Vậy, để hàm số y = (2k-1)x + 5 nghịch biến thì k < 1/2.
Ví dụ 2: Cho hàm số y = (m+2)x - 1. Tìm giá trị của m để hàm số là hàm số bậc nhất.
Lời giải: Để hàm số là hàm số bậc nhất, hệ số của x phải khác 0. Tức là:
m + 2 ≠ 0
Suy ra:
m ≠ -2
Vậy, để hàm số y = (m+2)x - 1 là hàm số bậc nhất thì m ≠ -2.
Để nắm vững kiến thức về hàm số bậc nhất, các em học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Giaitoan.edu.vn sẽ tiếp tục cung cấp các bài giải chi tiết và hướng dẫn giải các bài tập Toán 9 khác trong thời gian tới.
Bài tập 1.25 trang 25 SGK Toán 9 tập 1 - Kết nối tri thức là một bài tập cơ bản nhưng quan trọng trong chương trình học Toán 9. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.