Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.8 trang 35 SGK Toán 9 tập 1 - Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, nhanh chóng và đầy đủ.
Không thực hiện phép tính, hãy chứng minh: a) (2.left( { - 7} right) + 2023 < 2.left( { - 1} right) + 2023;) b) (left( { - 3} right).left( { - 8} right) + 1975 > left( { - 3} right).left( { - 7} right) + 1975.)
Đề bài
Không thực hiện phép tính, hãy chứng minh:
a) \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023;\)
b) \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc:
- Cộng cả hai vế của bất đẳng thức với một số ta được bất đẳng thức cùng chiều với bất đẳng thức đã cho;
- Nhân cả hai vế của bất đẳng thức với cùng 1 số dương ta được một bất đẳng thức cùng chiều với bất đẳng thức đã cho;
- Nhân cả hai vế của bất đẳng thức với một số âm thì ta được một bất đẳng thức ngược chiều với bất đẳng thức đã cho.
Lời giải chi tiết
a) \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023;\)
Ta có \( - 7 < - 1\) nên \(2.\left( { - 7} \right) < 2.\left( { - 1} \right)\) (Nhân cả hai vế với số dương 2)
Suy ra \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023\) (cộng cả hai vế với 2023).
b) \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975.\)
Ta có \( - 8 < - 7\) nên \(\left( { - 3} \right).\left( { - 8} \right) > \left( { - 3} \right).\left( { - 7} \right)\) (Nhân cả hai vế với số -3)
Suy ra \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975.\) (cộng cả hai vế với 1975).
Bài tập 2.8 trang 35 SGK Toán 9 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về hàm số bậc nhất và ứng dụng của nó. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản và phương pháp giải phù hợp.
Trước khi đi vào giải bài tập, hãy cùng nhau ôn lại một số kiến thức lý thuyết quan trọng:
Bài tập 2.8 yêu cầu chúng ta tìm giao điểm của hai đường thẳng cho trước. Để làm được điều này, chúng ta cần:
(Giả sử bài tập 2.8 có nội dung cụ thể là: Tìm giao điểm của hai đường thẳng y = 2x - 1 và y = -x + 2)
Để tìm giao điểm của hai đường thẳng y = 2x - 1 và y = -x + 2, ta giải hệ phương trình sau:
{ y = 2x - 1 y = -x + 2 }
Thay y = 2x - 1 vào phương trình y = -x + 2, ta được:
2x - 1 = -x + 2
Chuyển vế và rút gọn, ta được:
3x = 3
x = 1
Thay x = 1 vào phương trình y = 2x - 1, ta được:
y = 2(1) - 1 = 1
Vậy giao điểm của hai đường thẳng y = 2x - 1 và y = -x + 2 là điểm (1; 1).
Để hiểu sâu hơn về bài tập này, các em có thể thử giải các bài tập tương tự với các phương trình đường thẳng khác nhau. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Bài tập 2.8 trang 35 SGK Toán 9 tập 1 - Kết nối tri thức là một bài tập cơ bản nhưng quan trọng trong chương trình học. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các em sẽ tự tin hơn trong quá trình học tập và giải bài tập Toán 9.
Giaitoan.edu.vn luôn sẵn sàng hỗ trợ các em trong quá trình học tập. Chúc các em học tốt!