Logo Header
  1. Môn Toán
  2. Giải bài tập 8.14 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 8.14 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 8.14 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức

Bài tập 8.14 trang 66 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường gặp trong các kỳ thi và kiểm tra, do đó việc nắm vững phương pháp giải là vô cùng quan trọng.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 8.14 trang 66 SGK Toán 9 tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.

Một túi đựng 4 viên bi có cùng khối lượng và kích thước, được đánh số 1; 2; 3; 4. Lấy ngẫu nhiên hai viên bi từ trong túi. Xác suất để tích hai số ghi trên hai viên bi lớn hơn 3 là A. (frac{5}{7}). B. (frac{2}{3}). C. (frac{3}{4}). D. (frac{5}{6}).

Đề bài

Một túi đựng 4 viên bi có cùng khối lượng và kích thước, được đánh số 1; 2; 3; 4. Lấy ngẫu nhiên hai viên bi từ trong túi. Xác suất để tích hai số ghi trên hai viên bi lớn hơn 3 là

A. \(\frac{5}{7}\).

B. \(\frac{2}{3}\).

C. \(\frac{3}{4}\).

D. \(\frac{5}{6}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 8.14 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức 1

Cách tính xác suất của một biến cố E:

Bước 1. Mô tả không gian mẫu của phép thử. Từ đó xác định số phần tử của không gian mẫu \(\Omega \).

Bước 2. Chứng tỏ các kết quả có thể của phép thử là đồng khả năng.

Bước 3. Mô tả kết quả thuận lợi của biến cố E. Từ đó xác định số kết quả thuận lợi cho biến cố E.

Bước 4. Lập tỉ số giữa số kết quả thuận lợi cho biến cố E với số phần tử của không gian mẫu \(\Omega \).

Lời giải chi tiết

Kết quả phép thử được viết dưới dạng (a, b) trong đó a, b lần lượt là các số trên hai viên bi trong túi. Vì lấy đồng thời 2 viên bi nên \(a \ne b\).

Do đó, không gian mẫu là: \(\Omega = \left\{ {\left( {1,2} \right),\left( {1,3} \right),\left( {1,4} \right),\left( {2,3} \right),\left( {2,4} \right),\left( {3,4} \right)} \right\}\) nên số phần tử của không gian mẫu \(\Omega \) là 6.

Vì lấy ngẫu nhiên hai viên bi từ trong túi nên các kết quả có thể xảy ra ở trên là đồng khả năng.

Có 4 kết quả thuận lợi của biến cố “Tích hai số ghi trên hai viên bi lớn hơn 3” là: (1, 4), (2, 3), (2, 4), (3, 4). Do đó, \(P = \frac{4}{6} = \frac{2}{3}\).

Chọn B

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 8.14 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục giải bài tập toán lớp 9 trên nền tảng soạn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 8.14 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 8.14 SGK Toán 9 tập 2 Kết nối tri thức là một bài toán ứng dụng thực tế, đòi hỏi học sinh phải hiểu rõ về hàm số bậc nhất và hàm số bậc hai. Dưới đây là hướng dẫn giải chi tiết bài tập này:

Đề bài:

Một người đi xe máy từ A đến B với vận tốc trung bình 40 km/h. Nếu vận tốc tăng thêm 5 km/h thì thời gian đi từ A đến B giảm đi 18 phút. Tính quãng đường AB.

Lời giải:

1. Đặt ẩn:

  • Gọi quãng đường AB là x (km).
  • Thời gian đi từ A đến B với vận tốc 40 km/h là t (giờ).

2. Lập phương trình:

Ta có:

  • x = 40t (1)
  • x = (40 + 5)(t - 18/60) = 45(t - 0.3) (2)

3. Giải hệ phương trình:

Từ (1) và (2) ta có:

40t = 45(t - 0.3)

40t = 45t - 13.5

5t = 13.5

t = 2.7 (giờ)

Thay t = 2.7 vào (1) ta có:

x = 40 * 2.7 = 108 (km)

Kết luận:

Quãng đường AB dài 108 km.

Các kiến thức liên quan cần nắm vững:

  • Hàm số bậc nhất:y = ax + b (a ≠ 0)
  • Hàm số bậc hai:y = ax2 + bx + c (a ≠ 0)
  • Công thức tính vận tốc, thời gian, quãng đường:v = s/t, t = s/v, s = v*t
  • Cách giải bài toán ứng dụng hàm số: Đặt ẩn, lập phương trình, giải phương trình, kiểm tra nghiệm và kết luận.

Mở rộng và các bài tập tương tự:

Để hiểu rõ hơn về ứng dụng của hàm số trong thực tế, các em có thể tham khảo các bài tập tương tự sau:

  • Bài tập 8.15 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức
  • Bài tập 8.16 trang 66 SGK Toán 9 tập 2 - Kết nối tri thức
  • Các bài tập về hàm số bậc nhất và hàm số bậc hai trong các đề thi Toán 9.

Lưu ý khi giải bài tập:

  1. Đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yếu tố cần tìm.
  2. Chọn ẩn phù hợp và đặt ẩn một cách rõ ràng.
  3. Lập phương trình dựa trên mối quan hệ giữa các yếu tố đã cho.
  4. Giải phương trình và kiểm tra nghiệm.
  5. Viết kết luận một cách chính xác và đầy đủ.

Giaitoan.edu.vn – Nơi đồng hành cùng bạn học Toán 9

Giaitoan.edu.vn là website học toán online uy tín, cung cấp lời giải chi tiết, dễ hiểu cho các bài tập Toán 9, Toán 10, Toán 11, Toán 12. Chúng tôi luôn cập nhật kiến thức mới nhất và phương pháp giải bài tập hiệu quả nhất, giúp các em học sinh học tập tốt hơn.

Bài tậpLời giải
8.14 trang 66Đã giải chi tiết ở trên
8.15 trang 66Sắp có

Tài liệu, đề thi và đáp án Toán 9