Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải quyết các bài tập trong mục 1 trang 45 và 46 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc tự học Toán đôi khi gặp nhiều khó khăn. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải chính xác, rõ ràng, kèm theo các giải thích chi tiết để giúp bạn nắm vững kiến thức.
Tìm các số thực x sao cho ({x^2} = 49.)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 45 SGK Toán 9 Kết nối tri thức
Tìm các số thực x sao cho \({x^2} = 49.\)
Phương pháp giải:
Dựa vào kiến thức về bình phương của một số.
Lời giải chi tiết:
Ta có \({x^2} = 49 = {\left( { - 7} \right)^2} = {7^2}\) nên \(x = 7\) và \(x = - 7.\)
Vậy \(x \in \left\{ {7; - 7} \right\}.\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 45 SGK Toán 9 Kết nối tri thức
Tìm căn bậc hai của 121.
Phương pháp giải:
Căn bậc hai của một số thực không âm a là \(\sqrt a \) và \( - \sqrt a .\)
Lời giải chi tiết:
Ta có \(\sqrt {121} = 11\) nên 121 có hai căn bậc hai là 11 và -11.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 45 SGK Toán 9 Kết nối tri thức
Sử dụng MTCT tìm căn bậc hai của \(\frac{7}{{11}}\) (làm tròn đến chữ số thập phân thứ hai) .
Phương pháp giải:
Bấm máy tính \(\sqrt {\frac{7}{{11}}} \) mà hình hiện kết quả \(\frac{{\sqrt {77} }}{{11}}\) ta bấm \(S \Leftrightarrow D\) sẽ được kết quả 0,7977240352. Làm tròn đến chữ số tập phân thứ hai ta được \(\sqrt {\frac{7}{{11}}} \approx 0,80.\)
Lời giải chi tiết:
Ta có \(\sqrt {\frac{7}{{11}}} \approx 0,80\) nên căn bậc hai của \(\frac{7}{{11}}\) là 0,80 và -0,80.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 45SGK Toán 9 Kết nối tri thức
Tính và so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\) trong mỗi trường hợp sau:
a) \(a = 3;\)
b) \(a = - 3.\)
Phương pháp giải:
Chú ý: \(\left| a \right| = a\) khi \(a \ge 0\)
\(\left| a \right| = - a\) khi \(a < 0\)
Lời giải chi tiết:
a) \(a = 3;\)
Ta có \(a = 3\) thì \(\sqrt {{a^2}} = \sqrt {{3^2}} = \sqrt 9 = 3\)
\(\left| 3 \right| = 3\) nên \(\sqrt {{a^2}} = \left| a \right|.\)
b) \(a = - 3.\)
Ta có \(a = - 3\) thì \(\sqrt {{a^2}} = \sqrt {{{\left( { - 3} \right)}^2}} = \sqrt 9 = 3\)
\(\left| { - 3} \right| = 3\) nên \(\sqrt {{a^2}} = \left| a \right|.\)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 45 SGK Toán 9 Kết nối tri thức
Tìm các số thực x sao cho \({x^2} = 49.\)
Phương pháp giải:
Dựa vào kiến thức về bình phương của một số.
Lời giải chi tiết:
Ta có \({x^2} = 49 = {\left( { - 7} \right)^2} = {7^2}\) nên \(x = 7\) và \(x = - 7.\)
Vậy \(x \in \left\{ {7; - 7} \right\}.\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 45 SGK Toán 9 Kết nối tri thức
Tìm căn bậc hai của 121.
Phương pháp giải:
Căn bậc hai của một số thực không âm a là \(\sqrt a \) và \( - \sqrt a .\)
Lời giải chi tiết:
Ta có \(\sqrt {121} = 11\) nên 121 có hai căn bậc hai là 11 và -11.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 45 SGK Toán 9 Kết nối tri thức
Sử dụng MTCT tìm căn bậc hai của \(\frac{7}{{11}}\) (làm tròn đến chữ số thập phân thứ hai) .
Phương pháp giải:
Bấm máy tính \(\sqrt {\frac{7}{{11}}} \) mà hình hiện kết quả \(\frac{{\sqrt {77} }}{{11}}\) ta bấm \(S \Leftrightarrow D\) sẽ được kết quả 0,7977240352. Làm tròn đến chữ số tập phân thứ hai ta được \(\sqrt {\frac{7}{{11}}} \approx 0,80.\)
Lời giải chi tiết:
Ta có \(\sqrt {\frac{7}{{11}}} \approx 0,80\) nên căn bậc hai của \(\frac{7}{{11}}\) là 0,80 và -0,80.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 45SGK Toán 9 Kết nối tri thức
Tính và so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\) trong mỗi trường hợp sau:
a) \(a = 3;\)
b) \(a = - 3.\)
Phương pháp giải:
Chú ý: \(\left| a \right| = a\) khi \(a \ge 0\)
\(\left| a \right| = - a\) khi \(a < 0\)
Lời giải chi tiết:
a) \(a = 3;\)
Ta có \(a = 3\) thì \(\sqrt {{a^2}} = \sqrt {{3^2}} = \sqrt 9 = 3\)
\(\left| 3 \right| = 3\) nên \(\sqrt {{a^2}} = \left| a \right|.\)
b) \(a = - 3.\)
Ta có \(a = - 3\) thì \(\sqrt {{a^2}} = \sqrt {{{\left( { - 3} \right)}^2}} = \sqrt 9 = 3\)
\(\left| { - 3} \right| = 3\) nên \(\sqrt {{a^2}} = \left| a \right|.\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 46SGK Toán 9 Kết nối tri thức
a) Không sử dụng MTCT, tính: \(\sqrt {{6^2}} ;\sqrt {{{\left( { - 5} \right)}^2}} ;\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} .\)
b) So sánh 3 với \(\sqrt {10} \) bằng hai cách:
- Sử dụng MTCT;
- Sử dụng tính chất của căn bậc hai số học đã học ở lớp 7: Nếu \(0 \le a < b\) thì \(\sqrt a < \sqrt b .\)
Phương pháp giải:
Chú ý: \(\sqrt {{a^2}} = \left| a \right|\) và quy tắc phá giá trị tuyệt đối, quy tắc dấu ngoặc.
Lời giải chi tiết:
a)
\(\begin{array}{l}\sqrt {{6^2}} = 6;\\\sqrt {{{\left( { - 5} \right)}^2}} = \sqrt {25} = 5;\\\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} = \sqrt 5 - \left| {\sqrt 5 - 1} \right| = \sqrt 5 - \left( {\sqrt 5 - 1} \right) = \sqrt 5 - \sqrt 5 + 1 = 1.\end{array}\)
b)
- Sử dụng MTCT ta có \(\sqrt {10} \approx 3,16\) nên \(\sqrt {10} > 3.\)
- Sử dụng tính chất đã học của căn bậc hai số học ta có: \(3 = \sqrt 9 \) mà \(9 < 10\) nên \(\sqrt 9 < \sqrt {10} \) do đó \(3 < \sqrt {10} .\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 46SGK Toán 9 Kết nối tri thức
a) Không sử dụng MTCT, tính: \(\sqrt {{6^2}} ;\sqrt {{{\left( { - 5} \right)}^2}} ;\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} .\)
b) So sánh 3 với \(\sqrt {10} \) bằng hai cách:
- Sử dụng MTCT;
- Sử dụng tính chất của căn bậc hai số học đã học ở lớp 7: Nếu \(0 \le a < b\) thì \(\sqrt a < \sqrt b .\)
Phương pháp giải:
Chú ý: \(\sqrt {{a^2}} = \left| a \right|\) và quy tắc phá giá trị tuyệt đối, quy tắc dấu ngoặc.
Lời giải chi tiết:
a)
\(\begin{array}{l}\sqrt {{6^2}} = 6;\\\sqrt {{{\left( { - 5} \right)}^2}} = \sqrt {25} = 5;\\\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} = \sqrt 5 - \left| {\sqrt 5 - 1} \right| = \sqrt 5 - \left( {\sqrt 5 - 1} \right) = \sqrt 5 - \sqrt 5 + 1 = 1.\end{array}\)
b)
- Sử dụng MTCT ta có \(\sqrt {10} \approx 3,16\) nên \(\sqrt {10} > 3.\)
- Sử dụng tính chất đã học của căn bậc hai số học ta có: \(3 = \sqrt 9 \) mà \(9 < 10\) nên \(\sqrt 9 < \sqrt {10} \) do đó \(3 < \sqrt {10} .\)
Mục 1 của chương trình Toán 9 tập 1 - Kết nối tri thức tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc nhất. Đây là nền tảng quan trọng để học các kiến thức nâng cao hơn trong chương trình. Các bài tập trong mục này thường xoay quanh việc xác định hàm số, vẽ đồ thị hàm số, và giải các bài toán liên quan đến hàm số.
Bài 1 yêu cầu học sinh ôn lại các kiến thức cơ bản về hàm số bậc nhất, bao gồm định nghĩa, dạng tổng quát, và các tính chất của hàm số. Để giải bài tập này, bạn cần nắm vững các khái niệm như hệ số góc, giao điểm với trục tọa độ, và cách xác định hàm số khi biết đồ thị.
Bài 2 tập trung vào việc giải các bài toán liên quan đến đường thẳng song song và vuông góc. Để giải bài tập này, bạn cần nắm vững các điều kiện để hai đường thẳng song song, vuông góc, và cắt nhau. Đồng thời, bạn cũng cần biết cách xác định hệ số góc của đường thẳng.
Ví dụ: Cho hai đường thẳng d1: y = 2x + 1 và d2: y = -x + 3. Hãy xác định xem hai đường thẳng này có song song, vuông góc hay cắt nhau.
Giải:
Bài 3 yêu cầu học sinh ứng dụng kiến thức về hàm số bậc nhất vào việc giải các bài toán thực tế. Các bài toán này thường liên quan đến các đại lượng thay đổi tuyến tính, chẳng hạn như quãng đường đi được của một vật chuyển động đều, hoặc số tiền lãi khi đầu tư.
Ví dụ: Một người đi xe đạp với vận tốc 15 km/h. Hãy viết hàm số biểu thị quãng đường đi được của người đó sau thời gian t giờ.
Giải:
Gọi s là quãng đường đi được của người đó sau thời gian t giờ. Vì vận tốc của người đó là 15 km/h, nên quãng đường đi được của người đó sau thời gian t giờ là s = 15t. Vậy, hàm số biểu thị quãng đường đi được của người đó sau thời gian t giờ là s(t) = 15t.
Khi giải các bài tập về hàm số bậc nhất, bạn cần chú ý các điểm sau:
Để hiểu rõ hơn về hàm số bậc nhất, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức hữu ích về cách giải mục 1 trang 45, 46 SGK Toán 9 tập 1 - Kết nối tri thức. Chúc bạn học tập tốt!