Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 2 trang 127 SGK Toán 9 tập 2 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Một vệ tinh địa tĩnh chuyển động theo quỹ đạo tròn cách bề mặt Trái Đất khoảng (AB = 36;000km), tâm quỹ đạo trùng với tâm O của Trái Đất như hình bên. Vệ tinh phát tín hiệu vô tuyến theo đường thẳng đến một số vị trí trên bề mặt Trái Đất. Cho biết bán kính Trái Đất khoảng 6 400km, vị trí xa nhất trên bề mặt Trái Đất có thể nhận được tín hiệu từ vệ tinh cách vệ tinh bao nhiêu kilômét? (Làm tròn kết quả đến hàng đơn vị).
Đề bài
Một vệ tinh địa tĩnh chuyển động theo quỹ đạo tròn cách bề mặt Trái Đất khoảng \(AB = 36\;000km\), tâm quỹ đạo trùng với tâm O của Trái Đất như hình bên. Vệ tinh phát tín hiệu vô tuyến theo đường thẳng đến một số vị trí trên bề mặt Trái Đất. Cho biết bán kính Trái Đất khoảng 6 400km, vị trí xa nhất trên bề mặt Trái Đất có thể nhận được tín hiệu từ vệ tinh cách vệ tinh bao nhiêu kilômét? (Làm tròn kết quả đến hàng đơn vị).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng định lí Pythagore vào tam giác AHO vuông tại H để tính AH, từ đó đưa ra kết luận.
Lời giải chi tiết
Áp dụng định lí Pythagore vào tam giác AHO vuông tại H ta có:
\(A{H^2} + H{O^2} = A{O^2}\)
\(6\;{400^2} + A{H^2} = {\left( {36\;000 + 6400} \right)^2}\)
\(AH \approx 41\;914km\)
Vậy vị trí xa nhất trên bề mặt Trái Đất có thể nhận được tín hiệu từ vệ tinh cách vệ tinh khoảng 41914km.
Bài tập 2 trang 127 SGK Toán 9 tập 2 - Kết nối tri thức thuộc chương trình học Toán 9, tập trung vào việc ôn tập và củng cố kiến thức về hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, giúp các em hiểu sâu hơn về ứng dụng của hàm số bậc nhất trong đời sống.
Bài tập 2 bao gồm các câu hỏi liên quan đến việc xác định hệ số góc và tung độ gốc của hàm số bậc nhất, vẽ đồ thị hàm số, và tìm tọa độ giao điểm của hai đường thẳng.
Ví dụ: Cho hàm số y = 2x - 1. Hãy xác định hệ số góc và tung độ gốc của hàm số. Vẽ đồ thị hàm số. Tìm tọa độ giao điểm của đường thẳng y = 2x - 1 với đường thẳng y = -x + 2.
Giải:
y = 2x - 1 y = -x + 2
Ta có: 2x - 1 = -x + 2 => 3x = 3 => x = 1. Thay x = 1 vào phương trình y = 2x - 1, ta được y = 2(1) - 1 = 1. Vậy tọa độ giao điểm là (1; 1).
Hàm số bậc nhất có nhiều ứng dụng trong đời sống, ví dụ như tính tiền điện, tính tiền nước, tính quãng đường đi được trong một khoảng thời gian nhất định. Việc hiểu rõ về hàm số bậc nhất sẽ giúp bạn giải quyết các bài toán thực tế một cách dễ dàng hơn.
Bài tập 2 trang 127 SGK Toán 9 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải quyết bài tập một cách nhanh chóng và hiệu quả. Chúc bạn học tốt!