Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 9 tập 2 - Kết nối tri thức. Chúng tôi hiểu rằng việc giải bài tập Toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức.
Mục tiêu của chúng tôi là giúp bạn nắm vững kiến thức Toán học, tự tin giải quyết các bài tập và đạt kết quả tốt nhất trong học tập.
Cho phương trình (2{x^2} - 7x + 5 = 0). a) Xác định các hệ số a, b, c rồi tính (a + b + c). b) Chứng tỏ rằng ({x_1} = 1) là một nghiệm của phương trình. c) Dùng định lí Viète để tìm nghiệm còn lại ({x_2}) của phương trình.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 4 trang 22 SGK Toán 9 Kết nối tri thức
Cho phương trình \(3{x^2} + 5x + 2 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a - b + c\).
b) Chứng tỏ rằng \({x_1} = - 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Phương pháp giải:
a) Xác định hệ số của phương trình và tính tổng.
b) Thay \({x_1} = - 1\) vào phương trình \(3{x^2} + 5x + 2 = 0\) để chứng minh.
c) Theo định lí Viète ta có \({x_1}.{x_2} = \frac{2}{3}\). Thay \({x_1} = - 1\) vào phương trình \({x_1}.{x_2} = \frac{2}{3}\), tìm được \({x_2}\).
Lời giải chi tiết:
a) Ta có: \(a = 3;b = 5;c = 2\) nên \(a - b + c = 3 - 5 + 2 = 0\).
b) Thay \({x_1} = - 1\) vào phương trình \(3{x^2} + 5x + 2 = 0\) ta có: \(3.{\left( { - 1} \right)^2} + 5.\left( { - 1} \right) + 2 = 0\) (luôn đúng)
Vậy \({x_1} = - 1\) là một nghiệm của phương trình.
c) Theo định lí Viète ta có: \({x_1}.{x_2} = \frac{2}{3}\) suy ra \( \left( { - 1} \right).{x_2} = \frac{2}{3} \) nên \( {x_2} = \frac{{ - 2}}{3}\)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 22 SGK Toán 9 Kết nối tri thức
Cho phương trình \(2{x^2} - 7x + 5 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a + b + c\).
b) Chứng tỏ rằng \({x_1} = 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Phương pháp giải:
a) Xác định hệ số của phương trình và tính tổng.
b) Thay \({x_1} = 1\) vào phương trình \(2{x^2} - 7x + 5 = 0\) để chứng minh.
c) Theo định lí Viète ta có \({x_1}.{x_2} = \frac{5}{2}\). Thay \({x_1} = 1\) vào phương trình \({x_1}. {x_2} = \frac{5}{2}\), tìm được \({x_2}\).
Lời giải chi tiết:
a) Ta có: \(a = 2;b = - 7;c = 5\) nên \(a + b + c = 2 - 7 + 5 = 0\).
b) Thay \({x_1} = 1\) vào phương trình \(2{x^2} - 7x + 5 = 0\) ta có: \({2.1^2} - 7.1 + 5 = 0\) (luôn đúng)
Vậy \({x_1} = 1\) là một nghiệm của phương trình.
c) Theo định lí Viète ta có: \({x_1}.{x_2} = \frac{5}{2}\) suy ra \(1.{x_2} = \frac{5}{2}\) nên \({x_2} = \frac{5}{2}\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 23 SGK Toán 9 Kết nối tri thức
Tính nhẩm nghiệm của các phương trình sau:
a) \(3{x^2} - 11x + 8 = 0\);
b) \(4{x^2} + 15x + 11 = 0\);
c) \({x^2} + 2\sqrt 2 x + 2 = 0\), biết phương trình có một nghiệm là \(x = - \sqrt 2 \).
Phương pháp giải:
Xét phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
Nếu \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\), còn nghiệm kia là \({x_2} = \frac{c}{a}\).
Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\), còn nghiệm kia là \({x_2} = - \frac{c}{a}\).
Lời giải chi tiết:
a) Ta có: \(a + b + c = 3 - 11 + 8 = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{8}{3}\).
b) Ta có: \(a - b + c = 4 - 15 + 11 = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = - 1;{x_2} = \frac{{ - 11}}{4}\).
c) Gọi \({x_2}\) là nghiệm còn lại của phương trình.
Theo định lí Viète ta có: \({x_1}.{x_2} = 2\).
Do đó, \({x_2} = \frac{2}{{ - \sqrt 2 }} = - \sqrt 2 \).
Vậy phương trình có hai nghiệm \({x_1} = {x_2} = - \sqrt 2 \).
Video hướng dẫn giải
Trả lời câu hỏi Thử thách nhỏ trang 23 SGK Toán 9 Kết nối tri thức
Vuông nói: Hãy tìm một phương trình bậc hai mà tổng và tích các nghiệm của phương trình là hai số đối nhau.
Tròn nói: Tớ tìm ra rồi! Đó là phương trình \({x^2} + x + 1 = 0\).
Em có đồng ý với ý kiến của Tròn không? Vì sao?
Phương pháp giải:
Tính biệt thức \(\Delta = {b^2} - 4ac\) để chứng minh phương trình \({x^2} + x + 1 = 0\) vô nghiệm, từ đó đưa ý kiến.
Lời giải chi tiết:
Ta có: \(\Delta = {1^2} - 4.1.1 = - 3 < 0\) nên phương trình vô nghiệm.
Do đó, không tính được tổng và tích các nghiệm của phương trình \({x^2} + x + 1 = 0\).
Vậy em không đồng ý với kiến của Tròn.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 22 SGK Toán 9 Kết nối tri thức
Cho phương trình \(2{x^2} - 7x + 5 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a + b + c\).
b) Chứng tỏ rằng \({x_1} = 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Phương pháp giải:
a) Xác định hệ số của phương trình và tính tổng.
b) Thay \({x_1} = 1\) vào phương trình \(2{x^2} - 7x + 5 = 0\) để chứng minh.
c) Theo định lí Viète ta có \({x_1}.{x_2} = \frac{5}{2}\). Thay \({x_1} = 1\) vào phương trình \({x_1}. {x_2} = \frac{5}{2}\), tìm được \({x_2}\).
Lời giải chi tiết:
a) Ta có: \(a = 2;b = - 7;c = 5\) nên \(a + b + c = 2 - 7 + 5 = 0\).
b) Thay \({x_1} = 1\) vào phương trình \(2{x^2} - 7x + 5 = 0\) ta có: \({2.1^2} - 7.1 + 5 = 0\) (luôn đúng)
Vậy \({x_1} = 1\) là một nghiệm của phương trình.
c) Theo định lí Viète ta có: \({x_1}.{x_2} = \frac{5}{2}\) suy ra \(1.{x_2} = \frac{5}{2}\) nên \({x_2} = \frac{5}{2}\)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 4 trang 22 SGK Toán 9 Kết nối tri thức
Cho phương trình \(3{x^2} + 5x + 2 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a - b + c\).
b) Chứng tỏ rằng \({x_1} = - 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Phương pháp giải:
a) Xác định hệ số của phương trình và tính tổng.
b) Thay \({x_1} = - 1\) vào phương trình \(3{x^2} + 5x + 2 = 0\) để chứng minh.
c) Theo định lí Viète ta có \({x_1}.{x_2} = \frac{2}{3}\). Thay \({x_1} = - 1\) vào phương trình \({x_1}.{x_2} = \frac{2}{3}\), tìm được \({x_2}\).
Lời giải chi tiết:
a) Ta có: \(a = 3;b = 5;c = 2\) nên \(a - b + c = 3 - 5 + 2 = 0\).
b) Thay \({x_1} = - 1\) vào phương trình \(3{x^2} + 5x + 2 = 0\) ta có: \(3.{\left( { - 1} \right)^2} + 5.\left( { - 1} \right) + 2 = 0\) (luôn đúng)
Vậy \({x_1} = - 1\) là một nghiệm của phương trình.
c) Theo định lí Viète ta có: \({x_1}.{x_2} = \frac{2}{3}\) suy ra \( \left( { - 1} \right).{x_2} = \frac{2}{3} \) nên \( {x_2} = \frac{{ - 2}}{3}\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 2 trang 23 SGK Toán 9 Kết nối tri thức
Tính nhẩm nghiệm của các phương trình sau:
a) \(3{x^2} - 11x + 8 = 0\);
b) \(4{x^2} + 15x + 11 = 0\);
c) \({x^2} + 2\sqrt 2 x + 2 = 0\), biết phương trình có một nghiệm là \(x = - \sqrt 2 \).
Phương pháp giải:
Xét phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
Nếu \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\), còn nghiệm kia là \({x_2} = \frac{c}{a}\).
Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\), còn nghiệm kia là \({x_2} = - \frac{c}{a}\).
Lời giải chi tiết:
a) Ta có: \(a + b + c = 3 - 11 + 8 = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{8}{3}\).
b) Ta có: \(a - b + c = 4 - 15 + 11 = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = - 1;{x_2} = \frac{{ - 11}}{4}\).
c) Gọi \({x_2}\) là nghiệm còn lại của phương trình.
Theo định lí Viète ta có: \({x_1}.{x_2} = 2\).
Do đó, \({x_2} = \frac{2}{{ - \sqrt 2 }} = - \sqrt 2 \).
Vậy phương trình có hai nghiệm \({x_1} = {x_2} = - \sqrt 2 \).
Video hướng dẫn giải
Trả lời câu hỏi Thử thách nhỏ trang 23 SGK Toán 9 Kết nối tri thức
Vuông nói: Hãy tìm một phương trình bậc hai mà tổng và tích các nghiệm của phương trình là hai số đối nhau.
Tròn nói: Tớ tìm ra rồi! Đó là phương trình \({x^2} + x + 1 = 0\).
Em có đồng ý với ý kiến của Tròn không? Vì sao?
Phương pháp giải:
Tính biệt thức \(\Delta = {b^2} - 4ac\) để chứng minh phương trình \({x^2} + x + 1 = 0\) vô nghiệm, từ đó đưa ý kiến.
Lời giải chi tiết:
Ta có: \(\Delta = {1^2} - 4.1.1 = - 3 < 0\) nên phương trình vô nghiệm.
Do đó, không tính được tổng và tích các nghiệm của phương trình \({x^2} + x + 1 = 0\).
Vậy em không đồng ý với kiến của Tròn.
Mục 2 của chương trình Toán 9 tập 2 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững lý thuyết và kỹ năng giải bài tập liên quan. Việc hiểu rõ bản chất của vấn đề và áp dụng đúng phương pháp là chìa khóa để giải quyết thành công các bài tập trong mục này.
Để giúp các em học sinh hiểu rõ hơn về nội dung Mục 2 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức, chúng ta sẽ đi vào phân tích chi tiết từng bài tập. Trước khi bắt đầu giải, hãy đảm bảo rằng bạn đã nắm vững các kiến thức lý thuyết liên quan đến chủ đề này.
Bài tập này yêu cầu chúng ta… (Mô tả yêu cầu bài tập). Để giải bài tập này, chúng ta cần sử dụng kiến thức về… (Liệt kê kiến thức cần thiết). Dưới đây là lời giải chi tiết:
Kết luận: …
Bài tập này yêu cầu chúng ta… (Mô tả yêu cầu bài tập). Để giải bài tập này, chúng ta cần sử dụng kiến thức về… (Liệt kê kiến thức cần thiết). Dưới đây là lời giải chi tiết:
Trong Mục 2 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức, học sinh thường gặp các dạng bài tập sau:
Để giải bài tập Toán 9 hiệu quả, bạn có thể tham khảo một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập tương tự trong sách bài tập hoặc trên các trang web học toán online. Việc luyện tập thường xuyên sẽ giúp bạn tự tin hơn khi làm bài kiểm tra.
Công thức | Mô tả |
---|---|
Công thức 1 | Giải thích công thức 1 |
Công thức 2 | Giải thích công thức 2 |
Hy vọng rằng với lời giải chi tiết và những hướng dẫn trên, các em học sinh đã có thể tự tin giải quyết các bài tập trong Mục 2 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức. Chúc các em học tập tốt!