Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 9 tập 2 của giaitoan.edu.vn. Chúng tôi xin giới thiệu lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 80, 81, 82 sách giáo khoa Toán 9 tập 2 - Kết nối tri thức.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Cho tứ giác ABCD có (widehat A = widehat C = {90^o}) (H.9.28). Hãy giải thích vì sao bốn đỉnh của tứ giác ABCD cùng nằm trên một đường tròn có tâm là trung điểm O của đoạn thẳng BD.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 80SGK Toán 9 Kết nối tri thức
Trên đường tròn (O), lấy các điểm A, B, C, D sao cho tứ giác ABCD là tứ giác lồi (H.9.29). Các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy hay không?
Phương pháp giải:
+ Gọi E là trung điểm của AD.
+ Chứng minh được OE là đường trung trực của AD.
+ Chứng minh tương tự ta có các đường trung trực của các cạnh AB, BC, CD cũng đi qua O.
+ Vậy các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy.
Lời giải chi tiết:
Gọi E là trung điểm của AD. Tam giác AOD cân tại O (do \(OA = OD\)) nên OE là đường trung tuyến đồng thời là đường cao trong tam giác. Do đó, \(OE \bot AD\) tại E.
Vì \(OE \bot AD\) tại E và E là trung điểm của AD nên OE là đường trung trực của AD.
Do đó, đường trung trực của đoạn thẳng AD đi qua O.
Chứng minh tương tự ta có: Các đường trung trực của các cạnh AB, BC, CD đi qua O.
Vậy các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 81 SGK Toán 9 Kết nối tri thức
Cho tam giác ABC có các đường cao BE, CF. Biết rằng \(\widehat B = {60^o},\widehat C = {80^o}\).
a) Chứng tỏ rằng tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.
b) Tính số đo của các góc BFE và CEF.
Phương pháp giải:
a) + Chứng minh các tam giác BEC và tam giác BFC là các tam giác vuông.
+ Suy ra, các điểm B, F, E, C cùng thuộc đường tròn đường kính BC với tâm là trung điểm của BC.
b) Vì tứ giác BFEC nội tiếp đường tròn đường kính BC nên \(\widehat {FBC} + \widehat {FEC} = {180^o},\widehat {ECB} + \widehat {BFE} = {180^o}\), từ đó tính được các góc BFE và CEF.
Lời giải chi tiết:
a) Vì BE, CF là các đường cao của tam giác ABC nên \(BE \bot AC,CF \bot AB\). Do đó, tam giác BFC vuông tại F và tam giác BEC vuông tại E.
Vì tam giác BFC vuông tại F nên ba điểm B, F, C thuộc đường tròn đường kính BC với tâm là trung điểm của BC.
Vì tam giác BEC vuông tại E nên ba điểm B, E, C thuộc đường tròn đường kính BC với tâm là trung điểm của BC.
Vậy tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.
b) Vì tứ giác BFEC nội tiếp đường tròn đường kính BC nên
+ \(\widehat {FBC} + \widehat {FEC} = {180^o}\), hay \(\widehat {FEC} = {180^o} - \widehat {FBC} = {180^o} - {60^o} = {120^o}\).
+ \(\widehat {ECB} + \widehat {BFE} = {180^o}\), hay \(\widehat {BFE} = {180^o} - \widehat {ECB} = {180^o} - {80^o} = {100^o}\).
Video hướng dẫn giải
Trả lời câu hỏi Thử thách nhỏ 1 trang 82 SGK Toán 9 Kết nối tri thức
Cho tứ giác ABCD, biết rằng các đường trung trực của ba đoạn thẳng AB, AC, AD đồng quy tại một điểm. Hãy giải thích vì sao ABCD là tứ giác nội tiếp.
Phương pháp giải:
+ Gọi O là giao điểm của các đường trung trực của ba đoạn thẳng AB, AC, AD.
+ Sử dụng tính chất đường trung trực chứng minh được \(OA = OB = OC = OD\).
+ Suy ra, bốn điểm A, B, C, D cùng thuộc một đường tròn. Vậy ABCD là tứ giác nội tiếp.
Lời giải chi tiết:
Gọi O là giao điểm của các đường trung trực của ba đoạn thẳng AB, AC, AD.
Vì O thuộc trung trực của AB nên \(OA = OB\).
Vì O thuộc trung trực của AC nên \(OA = OC\).
Vì O thuộc trung trực của AD nên \(OA = OD\).
Do đó, \(OA = OB = OC = OD\).
Suy ra, bốn điểm A, B, C, D cùng thuộc đường tròn (O). Vậy ABCD là tứ giác nội tiếp.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 81 SGK Toán 9 Kết nối tri thức
Em hãy đo các góc đối nhau A và C của tứ giác ABCD trong HĐ2 và tính tổng \(\widehat A + \widehat C\). So sánh kết quả của em với các bạn.
Phương pháp giải:
Sử dụng thước đo góc để đo các góc A và C rồi tính tổng \(\widehat A + \widehat C\).
Lời giải chi tiết:
Ta có: \(\widehat A = {115^o},\widehat C = {65^o}\) và \(\widehat A + \widehat C = {65^o} + {115^o} = {180^o}\)
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 80SGK Toán 9 Kết nối tri thức
Cho tứ giác ABCD có \(\widehat A = \widehat C = {90^o}\) (H.9.28). Hãy giải thích vì sao bốn đỉnh của tứ giác ABCD cùng nằm trên một đường tròn có tâm là trung điểm O của đoạn thẳng BD.
Phương pháp giải:
+ Do tam giác ABD vuông tại A nên ba điểm A, B, D thuộc đường tròn đường kính BD với trung điểm của BD là tâm.
+ Vì tam giác CBD vuông tại C nên ba điểm C, B, D thuộc đường tròn đường kính BD với trung điểm của BD là tâm.
Lời giải chi tiết:
Vì tam giác ABD vuông tại A nên ba điểm A, B, D thuộc đường tròn đường kính BD. Mà O là trung điểm của BD nên ba điểm A, B, D thuộc đường tròn (O).
Vì tam giác CBD vuông tại C nên ba điểm C, B, D thuộc đường tròn đường kính BD. Mà O là trung điểm của BD nên ba điểm C, B, D thuộc đường tròn (O).
Do đó, 4 đỉnh của tứ giác ABCD cùng nằm trên một đường tròn có tâm là trung điểm O của BD.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 80SGK Toán 9 Kết nối tri thức
Cho tứ giác ABCD có \(\widehat A = \widehat C = {90^o}\) (H.9.28). Hãy giải thích vì sao bốn đỉnh của tứ giác ABCD cùng nằm trên một đường tròn có tâm là trung điểm O của đoạn thẳng BD.
Phương pháp giải:
+ Do tam giác ABD vuông tại A nên ba điểm A, B, D thuộc đường tròn đường kính BD với trung điểm của BD là tâm.
+ Vì tam giác CBD vuông tại C nên ba điểm C, B, D thuộc đường tròn đường kính BD với trung điểm của BD là tâm.
Lời giải chi tiết:
Vì tam giác ABD vuông tại A nên ba điểm A, B, D thuộc đường tròn đường kính BD. Mà O là trung điểm của BD nên ba điểm A, B, D thuộc đường tròn (O).
Vì tam giác CBD vuông tại C nên ba điểm C, B, D thuộc đường tròn đường kính BD. Mà O là trung điểm của BD nên ba điểm C, B, D thuộc đường tròn (O).
Do đó, 4 đỉnh của tứ giác ABCD cùng nằm trên một đường tròn có tâm là trung điểm O của BD.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 80SGK Toán 9 Kết nối tri thức
Trên đường tròn (O), lấy các điểm A, B, C, D sao cho tứ giác ABCD là tứ giác lồi (H.9.29). Các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy hay không?
Phương pháp giải:
+ Gọi E là trung điểm của AD.
+ Chứng minh được OE là đường trung trực của AD.
+ Chứng minh tương tự ta có các đường trung trực của các cạnh AB, BC, CD cũng đi qua O.
+ Vậy các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy.
Lời giải chi tiết:
Gọi E là trung điểm của AD. Tam giác AOD cân tại O (do \(OA = OD\)) nên OE là đường trung tuyến đồng thời là đường cao trong tam giác. Do đó, \(OE \bot AD\) tại E.
Vì \(OE \bot AD\) tại E và E là trung điểm của AD nên OE là đường trung trực của AD.
Do đó, đường trung trực của đoạn thẳng AD đi qua O.
Chứng minh tương tự ta có: Các đường trung trực của các cạnh AB, BC, CD đi qua O.
Vậy các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 81 SGK Toán 9 Kết nối tri thức
Em hãy đo các góc đối nhau A và C của tứ giác ABCD trong HĐ2 và tính tổng \(\widehat A + \widehat C\). So sánh kết quả của em với các bạn.
Phương pháp giải:
Sử dụng thước đo góc để đo các góc A và C rồi tính tổng \(\widehat A + \widehat C\).
Lời giải chi tiết:
Ta có: \(\widehat A = {115^o},\widehat C = {65^o}\) và \(\widehat A + \widehat C = {65^o} + {115^o} = {180^o}\)
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 81 SGK Toán 9 Kết nối tri thức
Cho tam giác ABC có các đường cao BE, CF. Biết rằng \(\widehat B = {60^o},\widehat C = {80^o}\).
a) Chứng tỏ rằng tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.
b) Tính số đo của các góc BFE và CEF.
Phương pháp giải:
a) + Chứng minh các tam giác BEC và tam giác BFC là các tam giác vuông.
+ Suy ra, các điểm B, F, E, C cùng thuộc đường tròn đường kính BC với tâm là trung điểm của BC.
b) Vì tứ giác BFEC nội tiếp đường tròn đường kính BC nên \(\widehat {FBC} + \widehat {FEC} = {180^o},\widehat {ECB} + \widehat {BFE} = {180^o}\), từ đó tính được các góc BFE và CEF.
Lời giải chi tiết:
a) Vì BE, CF là các đường cao của tam giác ABC nên \(BE \bot AC,CF \bot AB\). Do đó, tam giác BFC vuông tại F và tam giác BEC vuông tại E.
Vì tam giác BFC vuông tại F nên ba điểm B, F, C thuộc đường tròn đường kính BC với tâm là trung điểm của BC.
Vì tam giác BEC vuông tại E nên ba điểm B, E, C thuộc đường tròn đường kính BC với tâm là trung điểm của BC.
Vậy tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.
b) Vì tứ giác BFEC nội tiếp đường tròn đường kính BC nên
+ \(\widehat {FBC} + \widehat {FEC} = {180^o}\), hay \(\widehat {FEC} = {180^o} - \widehat {FBC} = {180^o} - {60^o} = {120^o}\).
+ \(\widehat {ECB} + \widehat {BFE} = {180^o}\), hay \(\widehat {BFE} = {180^o} - \widehat {ECB} = {180^o} - {80^o} = {100^o}\).
Video hướng dẫn giải
Trả lời câu hỏi Thử thách nhỏ 1 trang 82 SGK Toán 9 Kết nối tri thức
Cho tứ giác ABCD, biết rằng các đường trung trực của ba đoạn thẳng AB, AC, AD đồng quy tại một điểm. Hãy giải thích vì sao ABCD là tứ giác nội tiếp.
Phương pháp giải:
+ Gọi O là giao điểm của các đường trung trực của ba đoạn thẳng AB, AC, AD.
+ Sử dụng tính chất đường trung trực chứng minh được \(OA = OB = OC = OD\).
+ Suy ra, bốn điểm A, B, C, D cùng thuộc một đường tròn. Vậy ABCD là tứ giác nội tiếp.
Lời giải chi tiết:
Gọi O là giao điểm của các đường trung trực của ba đoạn thẳng AB, AC, AD.
Vì O thuộc trung trực của AB nên \(OA = OB\).
Vì O thuộc trung trực của AC nên \(OA = OC\).
Vì O thuộc trung trực của AD nên \(OA = OD\).
Do đó, \(OA = OB = OC = OD\).
Suy ra, bốn điểm A, B, C, D cùng thuộc đường tròn (O). Vậy ABCD là tứ giác nội tiếp.
Mục 1 của chương trình Toán 9 tập 2 - Kết nối tri thức tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc hai. Các bài tập trong trang 80, 81, 82 SGK Toán 9 tập 2 yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện tư duy logic và kỹ năng giải toán.
Bài 1 yêu cầu học sinh nhắc lại các kiến thức cơ bản về hàm số bậc hai, bao gồm:
Việc nắm vững các kiến thức này là nền tảng để giải quyết các bài tập tiếp theo.
Bài 2 yêu cầu học sinh xác định hệ số a, b, c của các hàm số bậc hai cho trước. Đây là một bài tập cơ bản nhưng quan trọng, giúp học sinh làm quen với việc phân tích và nhận diện các thành phần của hàm số.
Ví dụ:
Cho hàm số y = 2x2 - 5x + 3. Xác định hệ số a, b, c.
Lời giải:
Hệ số a = 2, b = -5, c = 3.
Bài 3 yêu cầu học sinh vẽ đồ thị của hàm số bậc hai. Để vẽ đồ thị, học sinh cần thực hiện các bước sau:
Việc vẽ đồ thị giúp học sinh hình dung rõ hơn về tính chất của hàm số và ứng dụng của nó trong thực tế.
Bài 4 yêu cầu học sinh tìm điều kiện để hàm số bậc hai có nghiệm. Hàm số bậc hai có nghiệm khi và chỉ khi phương trình ax2 + bx + c = 0 có nghiệm. Phương trình bậc hai có nghiệm khi và chỉ khi Δ ≥ 0.
Ví dụ:
Tìm điều kiện để phương trình x2 - 2x + m = 0 có nghiệm.
Lời giải:
Δ = (-2)2 - 4(1)(m) = 4 - 4m. Để phương trình có nghiệm thì Δ ≥ 0, tức là 4 - 4m ≥ 0, suy ra m ≤ 1.
Việc giải các bài tập trong mục 1 trang 80, 81, 82 SGK Toán 9 tập 2 - Kết nối tri thức là một bước quan trọng trong quá trình học tập môn Toán của các em. Hy vọng rằng với lời giải chi tiết và những lời khuyên hữu ích trên đây, các em sẽ tự tin hơn trong việc giải quyết các bài toán và đạt kết quả tốt nhất.