Bài tập 6.36 trang 29 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trong quá trình học tập, cung cấp các tài liệu học tập chất lượng và lời giải bài tập chính xác, nhanh chóng.
Tìm hai số u và v, biết: a) (u + v = 15,uv = 56); b) ({u^2} + {v^2} = 125,uv = 22).
Đề bài
Tìm hai số u và v, biết:
a) \(u + v = 15,uv = 56\);
b) \({u^2} + {v^2} = 125,uv = 22\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Hai u và v là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).
Lời giải chi tiết
a) Hai số u và v là nghiệm của phương trình \({x^2} - 15x + 56 = 0\)
Ta có: \(\Delta = {\left( { - 15} \right)^2} - 4.56 = 1 > 0\)
Suy ra phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{15 + 1}}{2} = 8;{x_2} = \frac{{15 - 1}}{2} = 7\).
Vậy \(u = 8;v = 7\) hoặc \(u = 7;v = 8\).
b) Ta có:
\({u^2} + {v^2} = 125\)
\({\left( {u + v} \right)^2} - 2uv = 125\)
\({\left( {u + v} \right)^2} = 125 + 2.22 = 169\)
Do đó, \(u + v = 13\) hoặc \(u + v = - 13\).
Trường hợp 1: \(u + v = 13\):
Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 22 = 0\)
Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.22 = 81 > 0\).
Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{13 +\sqrt{81}}{2} = 11\) và \(x_2 = \frac{13 - \sqrt{81}}{2} = 2\)
Trường hợp 2: \(u + v = - 13\):
Hai số u và v là nghiệm của phương trình \({x^2} + 13x + 22 = 0\)
Ta có: \(\Delta = {13^2} - 4.22 = 81 > 0\).
Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{-13 +\sqrt{81}}{2} = -2\) và \(x_2 = \frac{-13 - \sqrt{81}}{2} = -11\)
Vậy \((u,v) \in \left\{ (-2; -11); (-11;-2); (2; 11); (11;2) \right\} \) thỏa mãn \({u^2} + {v^2} = 125,uv = 22\).
Bài tập 6.36 trang 29 SGK Toán 9 tập 2 yêu cầu học sinh giải một bài toán thực tế liên quan đến hàm số bậc nhất và hàm số bậc hai. Để giải bài tập này, chúng ta cần nắm vững các kiến thức sau:
Trước khi bắt tay vào giải bài tập, chúng ta cần đọc kỹ đề bài và phân tích các thông tin đã cho. Xác định rõ các yếu tố cần tìm và các mối quan hệ giữa chúng. Sau đó, chúng ta sẽ tìm ra hướng giải phù hợp.
(Nội dung lời giải chi tiết bài tập 6.36 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và minh họa bằng hình ảnh nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải.)
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng xem xét một số ví dụ minh họa. Sau đó, chúng ta sẽ đưa ra một số bài tập tương tự để các em tự luyện tập.
Bài tập 6.36 trang 29 SGK Toán 9 tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng rằng, với lời giải chi tiết và các ví dụ minh họa trong bài viết này, các em sẽ tự tin hơn khi giải các bài tập tương tự.
Để hiểu sâu hơn về hàm số bậc nhất và hàm số bậc hai, các em có thể tham khảo thêm các tài liệu học tập khác, chẳng hạn như sách giáo khoa, sách bài tập, các trang web học toán online, hoặc các video hướng dẫn trên YouTube.
Công thức | Mô tả |
---|---|
y = ax + b | Hàm số bậc nhất |
y = ax² + bx + c | Hàm số bậc hai |
Δ = b² - 4ac | Biệt thức của phương trình bậc hai |