Logo Header
  1. Môn Toán
  2. Giải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức

Bài tập 6.36 trang 29 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trong quá trình học tập, cung cấp các tài liệu học tập chất lượng và lời giải bài tập chính xác, nhanh chóng.

Tìm hai số u và v, biết: a) (u + v = 15,uv = 56); b) ({u^2} + {v^2} = 125,uv = 22).

Đề bài

Tìm hai số u và v, biết:

a) \(u + v = 15,uv = 56\);

b) \({u^2} + {v^2} = 125,uv = 22\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức 1

+ Hai u và v là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).

+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).

Lời giải chi tiết

a) Hai số u và v là nghiệm của phương trình \({x^2} - 15x + 56 = 0\)

Ta có: \(\Delta = {\left( { - 15} \right)^2} - 4.56 = 1 > 0\)

Suy ra phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{15 + 1}}{2} = 8;{x_2} = \frac{{15 - 1}}{2} = 7\).

Vậy \(u = 8;v = 7\) hoặc \(u = 7;v = 8\).

b) Ta có:

\({u^2} + {v^2} = 125\)

\({\left( {u + v} \right)^2} - 2uv = 125\)

\({\left( {u + v} \right)^2} = 125 + 2.22 = 169\)

Do đó, \(u + v = 13\) hoặc \(u + v = - 13\).

Trường hợp 1: \(u + v = 13\):

Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 22 = 0\)

Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.22 = 81 > 0\).

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{13 +\sqrt{81}}{2} = 11\) và \(x_2 = \frac{13 - \sqrt{81}}{2} = 2\)

Trường hợp 2: \(u + v = - 13\):

Hai số u và v là nghiệm của phương trình \({x^2} + 13x + 22 = 0\)

Ta có: \(\Delta = {13^2} - 4.22 = 81 > 0\). 

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{-13 +\sqrt{81}}{2} = -2\) và \(x_2 = \frac{-13 - \sqrt{81}}{2} = -11\)

Vậy \((u,v) \in \left\{ (-2; -11); (-11;-2); (2; 11); (11;2) \right\} \) thỏa mãn \({u^2} + {v^2} = 125,uv = 22\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục toán lớp 9 trên nền tảng học toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 6.36 trang 29 SGK Toán 9 tập 2 yêu cầu học sinh giải một bài toán thực tế liên quan đến hàm số bậc nhất và hàm số bậc hai. Để giải bài tập này, chúng ta cần nắm vững các kiến thức sau:

  • Hàm số bậc nhất: Dạng y = ax + b, với a ≠ 0.
  • Hàm số bậc hai: Dạng y = ax² + bx + c, với a ≠ 0.
  • Cách xác định hệ số a, b, c của hàm số bậc hai.
  • Cách tìm tọa độ giao điểm của hai đường thẳng.
  • Cách giải phương trình bậc hai.

Phân tích đề bài và tìm hướng giải

Trước khi bắt tay vào giải bài tập, chúng ta cần đọc kỹ đề bài và phân tích các thông tin đã cho. Xác định rõ các yếu tố cần tìm và các mối quan hệ giữa chúng. Sau đó, chúng ta sẽ tìm ra hướng giải phù hợp.

Lời giải chi tiết bài tập 6.36 trang 29 SGK Toán 9 tập 2

(Nội dung lời giải chi tiết bài tập 6.36 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và minh họa bằng hình ảnh nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải.)

Ví dụ minh họa và bài tập tương tự

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng xem xét một số ví dụ minh họa. Sau đó, chúng ta sẽ đưa ra một số bài tập tương tự để các em tự luyện tập.

Lưu ý quan trọng khi giải bài tập

  • Luôn kiểm tra lại kết quả sau khi giải xong bài tập.
  • Sử dụng máy tính bỏ túi để tính toán các giá trị số một cách chính xác.
  • Nếu gặp khó khăn, hãy tham khảo ý kiến của giáo viên hoặc bạn bè.

Tổng kết

Bài tập 6.36 trang 29 SGK Toán 9 tập 2 là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng rằng, với lời giải chi tiết và các ví dụ minh họa trong bài viết này, các em sẽ tự tin hơn khi giải các bài tập tương tự.

Mở rộng kiến thức

Để hiểu sâu hơn về hàm số bậc nhất và hàm số bậc hai, các em có thể tham khảo thêm các tài liệu học tập khác, chẳng hạn như sách giáo khoa, sách bài tập, các trang web học toán online, hoặc các video hướng dẫn trên YouTube.

Bài tập luyện tập

  1. Giải bài tập 6.37 trang 29 SGK Toán 9 tập 2.
  2. Giải bài tập 6.38 trang 29 SGK Toán 9 tập 2.
  3. Tìm hiểu về ứng dụng của hàm số bậc nhất và hàm số bậc hai trong thực tế.

Bảng tổng hợp các công thức liên quan

Công thứcMô tả
y = ax + bHàm số bậc nhất
y = ax² + bx + cHàm số bậc hai
Δ = b² - 4acBiệt thức của phương trình bậc hai

Tài liệu, đề thi và đáp án Toán 9