Chào mừng các em học sinh đến với bài giải chi tiết mục 3 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức trên giaitoan.edu.vn. Bài viết này sẽ cung cấp lời giải đầy đủ, dễ hiểu cho từng bài tập, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, hỗ trợ các em học sinh chinh phục môn Toán một cách dễ dàng.
Giả sử hai số có tổng (S = 5) và tích (P = 6). Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm. a) Gọi một số là x. Tính số kia theo x. b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 5 trang 23 SGK Toán 9 Kết nối tri thức
Giả sử hai số có tổng \(S = 5\) và tích \(P = 6\). Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm.
a) Gọi một số là x. Tính số kia theo x.
b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.
Phương pháp giải:
a) Vì tổng hai nghiệm bằng 5 nên nghiệm còn lại là \(5 - x\).
b) + Thay x và \(5 - x\) vào biểu thức tích \(P = 6\), từ đó tìm được phương trình ẩn x.
+ Giải phương trình ẩn x ta tìm được hai số cần tìm.
Lời giải chi tiết:
a) Số còn lại là: \(5 - x\).
b) Tích của hai nghiệm bằng 6 nên ta có: \(x\left( {5 - x} \right) = 6\)
\({x^2} - 5x + 6 = 0\)
Ta có: \(\Delta = {\left( { - 5} \right)^2} - 4.1.6 = 1 > 0\) nên phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{5 + 1}}{2} = 3;{x_2} = \frac{{5 - 1}}{2} = 2\)
Vậy hai số cần tìm là 3 và 2.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 24 SGK Toán 9 Kết nối tri thức
Tìm hai số biết tổng của chúng bằng \( - 11\), tích của chúng bằng 28.
Phương pháp giải:
+ Hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).
Lời giải chi tiết:
Hai số cần tìm là hai nghiệm của phương trình \({x^2} + 11x + 28 = 0\)
Ta có: \(\Delta = {11^2} - 4.1.28 = 9 > 0\)
Suy ra phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - 11 + 3}}{2} = - 4;{x_2} = \frac{{ - 11 - 3}}{2} = - 7\).
Vậy hai số cần tìm là \( - 7\) và \( - 4\).
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng trang 24 SGK Toán 9 Kết nối tri thức
Giải bài toán trong tình huống mở đầu.
Tình huống mở đầu: Bác An có 40m hàng rào lưới thép, Bác muốn dùng nó để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật có diện tích \(96{m^2}\) để trồng rau. Tính chiều dài và chiều rộng của mảnh vườn đó.
Phương pháp giải:
+ Chiều dài và chiều rộng của mảnh vườn là nghiệm của phương trình: \({x^2} - 20x + 96 = 0\)
+ Giải phương trình ta tìm được chiều dài và chiều rộng của mảnh vườn.
Lời giải chi tiết:
Nửa chu vi của mảnh vườn là: \(40:2 = 20\left( m \right)\).
Khi đó, chiều dài và chiều rộng của mảnh vườn là nghiệm của phương trình:
\({x^2} - 20x + 96 = 0\)
Ta có: \(\Delta ' = {\left( { - 10} \right)^2} - 1.1.96 = 4\) nên phương trình có hai nghiệm \({x_1} = 10 + \sqrt 4 = 12;{x_2} = 10 - \sqrt 4 = 8\)
Do đó, chiều dài và chiều rộng của mảnh vườn lần lượt là 12m và 8m.
Chú ý khi giải: Trong hình chữ nhật, chiều dài luôn lớn hơn chiều rộng.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 5 trang 23 SGK Toán 9 Kết nối tri thức
Giả sử hai số có tổng \(S = 5\) và tích \(P = 6\). Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm.
a) Gọi một số là x. Tính số kia theo x.
b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.
Phương pháp giải:
a) Vì tổng hai nghiệm bằng 5 nên nghiệm còn lại là \(5 - x\).
b) + Thay x và \(5 - x\) vào biểu thức tích \(P = 6\), từ đó tìm được phương trình ẩn x.
+ Giải phương trình ẩn x ta tìm được hai số cần tìm.
Lời giải chi tiết:
a) Số còn lại là: \(5 - x\).
b) Tích của hai nghiệm bằng 6 nên ta có: \(x\left( {5 - x} \right) = 6\)
\({x^2} - 5x + 6 = 0\)
Ta có: \(\Delta = {\left( { - 5} \right)^2} - 4.1.6 = 1 > 0\) nên phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{5 + 1}}{2} = 3;{x_2} = \frac{{5 - 1}}{2} = 2\)
Vậy hai số cần tìm là 3 và 2.
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 3 trang 24 SGK Toán 9 Kết nối tri thức
Tìm hai số biết tổng của chúng bằng \( - 11\), tích của chúng bằng 28.
Phương pháp giải:
+ Hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).
Lời giải chi tiết:
Hai số cần tìm là hai nghiệm của phương trình \({x^2} + 11x + 28 = 0\)
Ta có: \(\Delta = {11^2} - 4.1.28 = 9 > 0\)
Suy ra phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - 11 + 3}}{2} = - 4;{x_2} = \frac{{ - 11 - 3}}{2} = - 7\).
Vậy hai số cần tìm là \( - 7\) và \( - 4\).
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng trang 24 SGK Toán 9 Kết nối tri thức
Giải bài toán trong tình huống mở đầu.
Tình huống mở đầu: Bác An có 40m hàng rào lưới thép, Bác muốn dùng nó để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật có diện tích \(96{m^2}\) để trồng rau. Tính chiều dài và chiều rộng của mảnh vườn đó.
Phương pháp giải:
+ Chiều dài và chiều rộng của mảnh vườn là nghiệm của phương trình: \({x^2} - 20x + 96 = 0\)
+ Giải phương trình ta tìm được chiều dài và chiều rộng của mảnh vườn.
Lời giải chi tiết:
Nửa chu vi của mảnh vườn là: \(40:2 = 20\left( m \right)\).
Khi đó, chiều dài và chiều rộng của mảnh vườn là nghiệm của phương trình:
\({x^2} - 20x + 96 = 0\)
Ta có: \(\Delta ' = {\left( { - 10} \right)^2} - 1.1.96 = 4\) nên phương trình có hai nghiệm \({x_1} = 10 + \sqrt 4 = 12;{x_2} = 10 - \sqrt 4 = 8\)
Do đó, chiều dài và chiều rộng của mảnh vườn lần lượt là 12m và 8m.
Chú ý khi giải: Trong hình chữ nhật, chiều dài luôn lớn hơn chiều rộng.
Mục 3 trong SGK Toán 9 tập 2 - Kết nối tri thức tập trung vào việc ôn tập chương về hàm số bậc nhất và hàm số bậc hai. Các bài tập trong mục này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tư duy logic và khả năng giải quyết vấn đề.
Bài 1 thường yêu cầu học sinh xác định các yếu tố của hàm số bậc nhất (hệ số góc, tung độ gốc), vẽ đồ thị hàm số, và giải các bài toán liên quan đến ứng dụng của hàm số bậc nhất trong thực tế.
Bài 2 tập trung vào việc ôn tập về hàm số bậc hai, bao gồm các yếu tố của hàm số (hệ số a, b, c), đỉnh của parabol, trục đối xứng, và giao điểm của parabol với các trục tọa độ.
Bài 3 thường là một bài tập tổng hợp, yêu cầu học sinh vận dụng kiến thức về cả hàm số bậc nhất và hàm số bậc hai để giải quyết một bài toán phức tạp.
Để giải các bài tập trong mục 3 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức một cách hiệu quả, học sinh cần:
Học Toán không chỉ là việc học thuộc công thức mà còn là việc hiểu bản chất của vấn đề. Hãy cố gắng suy nghĩ một cách logic và sáng tạo để tìm ra lời giải cho các bài toán. Đừng ngại hỏi thầy cô hoặc bạn bè nếu gặp khó khăn. Chúc các em học tập tốt!
Công thức | Mô tả |
---|---|
y = ax + b | Hàm số bậc nhất |
y = ax2 + bx + c | Hàm số bậc hai |
x0 = -b/2a | Hoành độ đỉnh của parabol |
Đây chỉ là một số công thức cơ bản, các em cần học thuộc và hiểu rõ hơn nữa để giải quyết các bài toán phức tạp. |