Chào mừng các em học sinh đến với bài giải chi tiết mục 1 trang 5 SGK Toán 9 tập 2 - Kết nối tri thức trên giaitoan.edu.vn. Chúng tôi cung cấp lời giải đầy đủ, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập Toán 9.
Bài giải này được xây dựng bởi đội ngũ giáo viên giàu kinh nghiệm, đảm bảo tính chính xác và phù hợp với chương trình học.
Khi thả một vật rơi tự do và bỏ qua sức cản của không khí, quãng đường của chuyển động s (mét) của vật được cho bằng công thức (s = 4,9{t^2}), trong đó t là thời gian chuyển động của vật (giây). a) Hoàn thành bảng sau vào vở: b) Giả sử một vật rơi tự do từ độ cao 19,6m so với mặt đất. Hỏi sau bao lâu vật chạm đất?
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 1 trang 5 SGK Toán 9 Kết nối tri thức
Cho hình chóp tứ giác đều có đáy là hình vuông cạnh a (cm) và chiều cao 15 cm.
a) Viết công thức thể tích V của hình chóp theo a và tính giá trị của V khi a = 5cm.
b) Nếu độ dài cạnh đáy tăng lên hai lần thì thể tích của hình chóp thay đổi như thế nào?
Phương pháp giải:
a) Sử dụng công thức tính thể tích V của hình chóp theo a.
\(V = \frac{1}{3}S.h\) (S là diện tích đáy, h là chiều cao)
Thay a = 5 cm để tính V.
b) Viết độ dài cạnh đáy a' mới theo a.
Biểu diễn thể tích mới theo độ dài cạnh mới.
Lời giải chi tiết:
a) Thể tích của hình chóp là:
\(V = \frac{1}{3}S.h = \frac{1}{3}a^2.15 = 5a^2 (cm^3)\).
Với a = 5cm, ta có:
\(V = 5.5^2 = 125 (cm^3)\)
b) Sau khi độ dài cạnh đáy tăng lên hai lần thì độ dài cạnh đáy mới là a' = 2a (cm).
Khi đó thể tích của hình chóp là:
\(V' = 5a'^2 = 5.(2a)^2=20a^2 = 4V\).
Vậy khi độ dài cạnh đáy tăng lên hai lần thì thể tích của hình chóp tăng lên 4 lần.
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 5 SGK Toán 9 Kết nối tri thức
a) Viết công thức tính diện tích S của hình tròn bán kính r.
b) Hoàn thành bảng sau vào vở (lấy \(\pi = 3,14\) và làm tròn kết quả đến chữ số thập phân thứ hai):
Phương pháp giải:
a) Công thức diện tích S của hình tròn bán kính r là: \(S = \pi {r^2}\).
b) Thay các giá trị \(r = 1;r = 2;r = 3;r = 4\) vào công thức \(S = \pi {r^2}\) ta sẽ tìm được S tương ứng, từ đó hoàn thành được bảng.
Lời giải chi tiết:
a) Công thức diện tích S của hình tròn bán kính r là: \(S = \pi {r^2}\).
b) Hoàn thành bảng:
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 5SGK Toán 9 Kết nối tri thức
Cho hàm số \(y = - \frac{3}{2}{x^2}\). Hoàn thành bảng giá trị sau vào vở:
Phương pháp giải:
Thay lần lượt các giá trị \(x = - 3;x = - 2;x = - 1;x = 0;x = 1;x = 2;x = 3\) vào công thức \(y = - \frac{3}{2}{x^2}\) ta sẽ tìm được y tương ứng, từ đó hoàn thành được bảng.
Lời giải chi tiết:
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 5 SGK Toán 9 Kết nối tri thức
Khi thả một vật rơi tự do và bỏ qua sức cản của không khí, quãng đường của chuyển động s (mét) của vật được cho bằng công thức \(s = 4,9{t^2}\), trong đó t là thời gian chuyển động của vật (giây).
a) Hoàn thành bảng sau vào vở:
b) Giả sử một vật rơi tự do từ độ cao 19,6m so với mặt đất. Hỏi sau bao lâu vật chạm đất?
Phương pháp giải:
a) Thay lần lượt các giá trị \(t = 0;t = 1;t = 2\) vào công thức \(s = 4,9{t^2}\) ta sẽ tìm được quãng đường s tương ứng với thời gian chuyển động của vật.
b) Thay \(s = 19,6\) vào công thức \(s = 4,9{t^2}\) ta sẽ tìm được t tương ứng, từ đó tìm được thời gian vật chạm đất.
Lời giải chi tiết:
a) Hoàn thành bảng:
b) Vật rơi tự do ở độ cao 19,6m so với mặt đất tức là \(s = 19,6\).
Thay vào công thức \(s = 4,9{t^2}\) ta có:
\(19,6 = 4,9{t^2} \Rightarrow {t^2} = 4 \Rightarrow t = 2\) (do \(t \ge 0\))
Vậy sau 2 giây thì vật chạm đất.
Chú ý khi giải: Thời gian trong chuyển động của vật không âm, tức là \(t \ge 0\).
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 5 SGK Toán 9 Kết nối tri thức
Khi thả một vật rơi tự do và bỏ qua sức cản của không khí, quãng đường của chuyển động s (mét) của vật được cho bằng công thức \(s = 4,9{t^2}\), trong đó t là thời gian chuyển động của vật (giây).
a) Hoàn thành bảng sau vào vở:
b) Giả sử một vật rơi tự do từ độ cao 19,6m so với mặt đất. Hỏi sau bao lâu vật chạm đất?
Phương pháp giải:
a) Thay lần lượt các giá trị \(t = 0;t = 1;t = 2\) vào công thức \(s = 4,9{t^2}\) ta sẽ tìm được quãng đường s tương ứng với thời gian chuyển động của vật.
b) Thay \(s = 19,6\) vào công thức \(s = 4,9{t^2}\) ta sẽ tìm được t tương ứng, từ đó tìm được thời gian vật chạm đất.
Lời giải chi tiết:
a) Hoàn thành bảng:
b) Vật rơi tự do ở độ cao 19,6m so với mặt đất tức là \(s = 19,6\).
Thay vào công thức \(s = 4,9{t^2}\) ta có:
\(19,6 = 4,9{t^2} \Rightarrow {t^2} = 4 \Rightarrow t = 2\) (do \(t \ge 0\))
Vậy sau 2 giây thì vật chạm đất.
Chú ý khi giải: Thời gian trong chuyển động của vật không âm, tức là \(t \ge 0\).
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 5 SGK Toán 9 Kết nối tri thức
a) Viết công thức tính diện tích S của hình tròn bán kính r.
b) Hoàn thành bảng sau vào vở (lấy \(\pi = 3,14\) và làm tròn kết quả đến chữ số thập phân thứ hai):
Phương pháp giải:
a) Công thức diện tích S của hình tròn bán kính r là: \(S = \pi {r^2}\).
b) Thay các giá trị \(r = 1;r = 2;r = 3;r = 4\) vào công thức \(S = \pi {r^2}\) ta sẽ tìm được S tương ứng, từ đó hoàn thành được bảng.
Lời giải chi tiết:
a) Công thức diện tích S của hình tròn bán kính r là: \(S = \pi {r^2}\).
b) Hoàn thành bảng:
Video hướng dẫn giải
Trả lời câu hỏi Luyện tập 1 trang 5SGK Toán 9 Kết nối tri thức
Cho hàm số \(y = - \frac{3}{2}{x^2}\). Hoàn thành bảng giá trị sau vào vở:
Phương pháp giải:
Thay lần lượt các giá trị \(x = - 3;x = - 2;x = - 1;x = 0;x = 1;x = 2;x = 3\) vào công thức \(y = - \frac{3}{2}{x^2}\) ta sẽ tìm được y tương ứng, từ đó hoàn thành được bảng.
Lời giải chi tiết:
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 1 trang 5 SGK Toán 9 Kết nối tri thức
Cho hình chóp tứ giác đều có đáy là hình vuông cạnh a (cm) và chiều cao 15 cm.
a) Viết công thức thể tích V của hình chóp theo a và tính giá trị của V khi a = 5cm.
b) Nếu độ dài cạnh đáy tăng lên hai lần thì thể tích của hình chóp thay đổi như thế nào?
Phương pháp giải:
a) Sử dụng công thức tính thể tích V của hình chóp theo a.
\(V = \frac{1}{3}S.h\) (S là diện tích đáy, h là chiều cao)
Thay a = 5 cm để tính V.
b) Viết độ dài cạnh đáy a' mới theo a.
Biểu diễn thể tích mới theo độ dài cạnh mới.
Lời giải chi tiết:
a) Thể tích của hình chóp là:
\(V = \frac{1}{3}S.h = \frac{1}{3}a^2.15 = 5a^2 (cm^3)\).
Với a = 5cm, ta có:
\(V = 5.5^2 = 125 (cm^3)\)
b) Sau khi độ dài cạnh đáy tăng lên hai lần thì độ dài cạnh đáy mới là a' = 2a (cm).
Khi đó thể tích của hình chóp là:
\(V' = 5a'^2 = 5.(2a)^2=20a^2 = 4V\).
Vậy khi độ dài cạnh đáy tăng lên hai lần thì thể tích của hình chóp tăng lên 4 lần.
Mục 1 trang 5 SGK Toán 9 tập 2 - Kết nối tri thức thường xoay quanh các kiến thức cơ bản về hàm số bậc nhất, bao gồm định nghĩa, tính chất, cách xác định hàm số và ứng dụng của hàm số trong việc giải quyết các bài toán thực tế. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các chương tiếp theo của môn Toán 9.
Mục 1 thường giới thiệu về:
Các bài tập trong Mục 1 thường thuộc các dạng sau:
Để giải tốt các bài tập trong Mục 1, các em cần:
Ví dụ 1: Xác định hàm số bậc nhất y = ax + b biết đồ thị của hàm số đi qua hai điểm A(0; 2) và B(1; 4).
Giải:
Thay tọa độ điểm A(0; 2) vào phương trình hàm số, ta có: 2 = a * 0 + b => b = 2.
Thay tọa độ điểm B(1; 4) và b = 2 vào phương trình hàm số, ta có: 4 = a * 1 + 2 => a = 2.
Vậy hàm số bậc nhất cần tìm là y = 2x + 2.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các em nên:
Các em có thể tìm hiểu thêm về:
Hy vọng với bài giải chi tiết và phương pháp giải hiệu quả này, các em sẽ tự tin hơn trong việc học tập môn Toán 9. Chúc các em học tốt!