Bài tập 6.19 trang 20 SGK Toán 9 tập 2 thuộc chương Hàm số bậc nhất. Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất để giải quyết các bài toán thực tế liên quan đến việc xác định hàm số và ứng dụng của nó.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 6.19 trang 20 SGK Toán 9 tập 2 - Kết nối tri thức, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau: a) ({x^2} - 2sqrt 5 x + 1 = 0); b) (3{x^2} - 9x + 3 = 0); c) (11{x^2} - 13x + 5 = 0); d) (2{x^2} + 2sqrt 6 x + 3 = 0).
Đề bài
Sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 1 = 0\);
b) \(3{x^2} - 9x + 3 = 0\);
c) \(11{x^2} - 13x + 5 = 0\);
d) \(2{x^2} + 2\sqrt 6 x + 3 = 0\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a, d) Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), với \(b = 2b'\) và \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b - \sqrt {\Delta '} }}{a}\).
+ Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b'}}{a}\).
+ Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
b, c) Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta = {b^2} - 4ac\)
+ Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).
+ Nếu \(\Delta = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).
+ Nếu \(\Delta < 0\) thì phương trình vô nghiệm.
Lời giải chi tiết
a) Ta có: \(\Delta' = {\left( { - \sqrt 5 } \right)^2} - 1.1 = 4 > 0\) nên phương trình có hai nghiệm phân biệt: \({x_1} = \sqrt 5 + 2;{x_2} = \sqrt 5 - 2\)
b) Ta có: \(\Delta = {\left( { - 9} \right)^2} - 4.3.3 = 45 > 0\) nên phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{9 + 3\sqrt 5 }}{6} = \frac{{3 + \sqrt 5 }}{2};{x_2} = \frac{{9 - 3\sqrt 5 }}{6} = \frac{{3 - \sqrt 5 }}{2}\)
c) Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.5.11 = - 51 < 0\) nên phương trình vô nghiệm.
d) Ta có: \(\Delta' = {\left( {\sqrt 6 } \right)^2} - 2.3 = 0\) nên phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - \sqrt 6 }}{2}\).
Bài tập 6.19 SGK Toán 9 tập 2 - Kết nối tri thức là một bài toán ứng dụng thực tế, giúp học sinh củng cố kiến thức về hàm số bậc nhất. Để giải bài tập này, chúng ta cần nắm vững các khái niệm cơ bản như:
Đề bài: (Đề bài đầy đủ của bài tập 6.19 cần được chèn vào đây)
Để giải bài tập 6.19, chúng ta thực hiện các bước sau:
Ví dụ minh họa: (Ví dụ minh họa chi tiết cách giải bài tập 6.19, bao gồm các bước giải và giải thích rõ ràng)
Ngoài bài tập 6.19, còn rất nhiều bài tập tương tự trong chương Hàm số bậc nhất. Dưới đây là một số dạng bài tập thường gặp:
Để giải các bài tập về hàm số bậc nhất một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Bài tập 6.19 trang 20 SGK Toán 9 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh sẽ tự tin hơn khi làm bài tập Toán 9.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Hãy truy cập website của chúng tôi để xem thêm nhiều bài giải và tài liệu học tập hữu ích khác.
Lưu ý: Nội dung bài giải trên chỉ mang tính chất tham khảo. Các em học sinh nên tự mình giải bài tập để hiểu rõ hơn về phương pháp giải và rèn luyện kỹ năng giải toán.