Chào mừng bạn đến với bài học về Tỉ số lượng giác của góc nhọn trong chương trình Toán 9 Kết nối tri thức tại giaitoan.edu.vn. Bài học này sẽ cung cấp cho bạn những kiến thức cơ bản và quan trọng nhất về các tỉ số lượng giác, giúp bạn giải quyết các bài toán liên quan một cách hiệu quả.
Chúng ta sẽ cùng nhau tìm hiểu định nghĩa, các công thức tính toán và ứng dụng thực tế của sin, cosin, tang và cotang trong tam giác vuông.
1. Khái niệm tỉ số lượng giác của một góc nhọn
1. Khái niệm tỉ số lượng giác của một góc nhọn
\({\rm{sin\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,huyền}};{\rm{cos\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,huyền}};\) \({\rm{tan\alpha }} = \frac{{cạnh\,đối}}{{cạnh\,kề}};{\rm{cot\alpha }} = \frac{{cạnh\,kề}}{{cạnh\,đối}}.\) \(\cot \alpha = \frac{1}{{\tan \alpha }}\). \(\sin \alpha ,\cos \alpha ,\tan \alpha ,\cot \alpha \) gọi là các tỉ số lượng giác của góc nhọn \(\alpha \). |
Tip học thuộc nhanh:
Sin đi học Cos không hư Tan đoàn kết Cotan kết đoàn |
Chú ý: Nếu \(\alpha \) là một góc nhọn thì \(0 < \sin \alpha < 1\); \(0 < \cos \alpha < 1\); \(\tan \alpha > 0\); \(\cot \alpha > 0.\)
Ví dụ:
Theo định nghĩa của tỉ số lượng giác, ta có:
\(\sin \alpha = \frac{{AC}}{{BC}} = \frac{4}{5}\), \(\cos \alpha = \frac{{AB}}{{BC}} = \frac{3}{5}\), \(\tan \alpha = \frac{{AC}}{{AB}} = \frac{4}{3}\), \(\cot \alpha = \frac{{AB}}{{AC}} = \frac{3}{4}\)
Giá trị lượng giác của các góc \({30^0},{45^0},{60^0}\)
2. Tỉ số lượng giác của hai góc phụ nhau
Định lí về tỉ số lượng giác của hai góc phụ nhau
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tan góc này bằng côtang góc kia. |
Cho \(\alpha \) và \(\beta \) là hai góc phụ nhau, ta có:
\(\sin \alpha = \cos \beta \), \(\cos \alpha = \sin \beta \), \(\tan \alpha = \cot \beta \), \(\cot \alpha = \tan \beta \).
Ví dụ:
\(\begin{array}{l}\sin {60^0} = \cos \left( {{{90}^0} - {{60}^0}} \right) = \cos {30^0};\\\cos {52^0}30' = \sin \left( {{{90}^0} - {{52}^0}30'} \right) = \sin {37^0}30';\\\tan {80^0} = \cot \left( {{{90}^0} - {{80}^0}} \right) = \cot {10^0};\\\cot {82^0} = \tan \left( {{{90}^0} - {{82}^0}} \right) = \tan {8^0}.\end{array}\)
3. Sử dụng máy tính cầm tay tính tỉ số lượng giác của một góc nhọn
Sử dụng máy tính cầm tay để tính các tỉ số lượng giác
Sử dụng máy tính cầm tay để tìm được góc khi biết một trong các tỉ số lượng giác của góc đó
Một số công thức mở rộng:
+) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
+) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\)
+) \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\)
+) \(\tan \alpha .\cot \alpha = 1\)
+) \(\frac{1}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\)
+) \(\frac{1}{{{{\sin }^2}\alpha }} = {\cot ^2}\alpha + 1\)
Trong chương trình Toán 9, phần Tỉ số lượng giác của góc nhọn đóng vai trò quan trọng, là nền tảng cho việc giải quyết nhiều bài toán hình học và ứng dụng thực tế. Bài viết này sẽ trình bày chi tiết lý thuyết, công thức và các ví dụ minh họa để giúp bạn hiểu rõ và nắm vững kiến thức này.
Xét tam giác vuông ABC vuông tại A. Gọi AB = c, AC = b, BC = a. Góc B và góc C là các góc nhọn. Ta định nghĩa:
Tương tự, ta có thể định nghĩa sin, cos, tan, cot của góc C.
Các góc đặc biệt thường gặp là 30°, 45°, 60°. Dưới đây là bảng giá trị lượng giác của các góc này:
Góc | sin | cos | tan | cot |
---|---|---|---|---|
30° | 1/2 | √3/2 | √3/3 | √3 |
45° | √2/2 | √2/2 | 1 | 1 |
60° | √3/2 | 1/2 | √3 | √3/3 |
Các tỉ số lượng giác có mối quan hệ mật thiết với nhau:
Tỉ số lượng giác được ứng dụng rộng rãi trong:
Bài 1: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 12cm. Tính sin B, cos B, tan B, cot B.
Giải:
Bài 2: Tính giá trị của biểu thức: sin 30° + cos 60° - tan 45°
Giải:
sin 30° + cos 60° - tan 45° = 1/2 + 1/2 - 1 = 0
Lý thuyết Tỉ số lượng giác của góc nhọn là một phần kiến thức quan trọng trong chương trình Toán 9. Việc nắm vững các định nghĩa, công thức và ứng dụng của các tỉ số lượng giác sẽ giúp bạn giải quyết các bài toán một cách hiệu quả và tự tin. Hãy luyện tập thường xuyên để củng cố kiến thức và nâng cao kỹ năng giải toán của mình.