Logo Header
  1. Môn Toán
  2. Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

Bài tập 6.50 trang 31 SGK Toán 9 tập 2 thuộc chương trình Toán 9 Kết nối tri thức, yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường gặp trong các kỳ thi và kiểm tra, do đó việc nắm vững phương pháp giải là vô cùng quan trọng.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 6.50 trang 31 SGK Toán 9 tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.

Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức (d = 0,05{v^2} + 1,1v) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc

Đề bài

Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức \(d = 0,05{v^2} + 1,1v\) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiếtGiải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức 1

+ Thay \(d = 300feet\) vào công thức \(d = 0,05{v^2} + 1,1v\) để tìm v.

+ So sánh vận tốc đó với 70 dặm/ giờ, từ đó đưa ra kết luận.

Lời giải chi tiết

Với \(d = 300feet\) ta có: \(0,05{v^2} + 1,1v = 300\)

\(0,05{v^2} + 1,1,v - 300 = 0\)

Ta có: \(\Delta = 1,{1^2} - 4.0,05.\left( { - 300} \right) = 61,21\) nên phương trình có hai nghiệm phân biệt

\(\begin{array}{l}{v_1} = \frac{{ - 1,1 + \sqrt {61,21} }}{{2.0,05}} = - 11 + \sqrt {6121} \left( {tm\;do\;v > 0} \right);\\{v_2} = \frac{{ - 1,1 - \sqrt {61,21} }}{{2.0,05}} = - 11 - \sqrt {6121} \left( {ktm\;do\;v > 0} \right)\end{array}\)

Vì \( - 11 + \sqrt {6121} < 70\) nên ô tô dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.

Chú ý khi giải: Tốc độ trong chuyển động luôn dương.

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 9 trên nền tảng toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức: Hướng dẫn chi tiết

Bài tập 6.50 trang 31 SGK Toán 9 tập 2 yêu cầu học sinh giải một bài toán thực tế liên quan đến hàm số bậc nhất và hàm số bậc hai. Để giải bài tập này, chúng ta cần nắm vững các kiến thức sau:

  • Hàm số bậc nhất: Dạng y = ax + b, với a ≠ 0.
  • Hàm số bậc hai: Dạng y = ax² + bx + c, với a ≠ 0.
  • Cách xác định hệ số a, b, c của hàm số bậc hai.
  • Cách tìm tọa độ giao điểm của hai đường thẳng.
  • Cách giải phương trình bậc hai.

Phân tích đề bài và tìm hướng giải

Trước khi bắt tay vào giải bài tập, chúng ta cần đọc kỹ đề bài và phân tích các thông tin đã cho. Xác định rõ các yếu tố liên quan đến hàm số, các điểm dữ liệu và yêu cầu của bài toán. Sau đó, chúng ta sẽ tìm ra hướng giải phù hợp nhất.

Lời giải chi tiết bài tập 6.50 trang 31 SGK Toán 9 tập 2

(Nội dung lời giải chi tiết bài tập 6.50 sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng và minh họa bằng hình ảnh nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải.)

Ví dụ minh họa và bài tập tương tự

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập 6.50, chúng ta sẽ cùng nhau xem xét một số ví dụ minh họa. Sau đó, chúng ta sẽ đưa ra một số bài tập tương tự để các em tự luyện tập và củng cố kiến thức.

Lưu ý quan trọng khi giải bài tập về hàm số

  • Luôn kiểm tra lại các điều kiện của bài toán.
  • Sử dụng các công thức và định lý một cách chính xác.
  • Vẽ hình minh họa để giúp hiểu rõ hơn về bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tổng kết

Bài tập 6.50 trang 31 SGK Toán 9 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa, các em học sinh sẽ tự tin giải quyết bài tập này và các bài tập tương tự trong tương lai.

Các bài tập liên quan

  1. Bài tập 6.49 trang 31 SGK Toán 9 tập 2
  2. Bài tập 6.51 trang 31 SGK Toán 9 tập 2
  3. Các bài tập khác trong chương 6 SGK Toán 9 tập 2

Bảng tổng hợp các công thức liên quan đến hàm số

Công thứcMô tả
y = ax + bHàm số bậc nhất
y = ax² + bx + cHàm số bậc hai
Δ = b² - 4acBiệt thức của phương trình bậc hai

Tài liệu, đề thi và đáp án Toán 9