Bài tập Câu 1 trang 223 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học. Bài toán này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.
a. Tính
Tính \(\sin {\pi \over 8}\,\text{ và }\,\cos {\pi \over 8}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & {\sin ^2}{\pi \over 8} = {{1 - \cos {\pi \over 4}} \over 2} = {{1 - {{\sqrt 2 } \over 2}} \over 2} = {{2 - \sqrt 2 } \over 4} \cr & \Rightarrow \sin {\pi \over 8} = {1 \over 2}\sqrt {2 - \sqrt 2 } \cr & {\cos ^2}{\pi \over 8} = {{1 + \cos {\pi \over 4}} \over 2} = {{1 + {{\sqrt 2 } \over 2}} \over 2} = {{2 + \sqrt 2 } \over 4} \cr & \Rightarrow \cos {\pi \over 8} = {1 \over 2}\sqrt {2 + \sqrt 2 } \cr} \)
Chứng minh rằng có hằng số C > 0 để có đẳng thức
\(\sin x + \left( {\sqrt 2 - 1} \right)\cos x \) \(= C\cos \left( {x - {{3\pi } \over 8}} \right)\) với mọi x.
Lời giải chi tiết:
Ta có:
\(\eqalign{ & {1^2} + {\left( {\sqrt 2 - 1} \right)^2} = 4 - 2\sqrt 2 .\,\text{ Do đó}\,: \cr & \sin x + \left( {\sqrt 2 - 1} \right)\cos x \cr & = \left( {\sqrt {4 - 2\sqrt 2 } } \right)\left( {{1 \over {\sqrt {4 - 2\sqrt 2 } }}\sin x + {{\sqrt 2 - 1} \over {\sqrt {4 - 2\sqrt 2 } }}\cos x} \right) \cr & = \sqrt {4 - 2\sqrt 2 } \left( {\sin x\cos {\pi \over 8} + \sin {\pi \over 8}\cos x} \right) \cr & = \sqrt {4 - 2\sqrt 2 } \sin \left( {x + {\pi \over 8}} \right) \cr & = \sqrt {4 - 2\sqrt 2 } \cos \left( {x - {{3\pi } \over 8}} \right) \cr & \text{ Vì }\,{1 \over {\sqrt {4 - 2\sqrt 2 } }} = {{\sqrt {4 + 2\sqrt 2 } } \over {\sqrt 8 }} \cr &= {1 \over 2}\sqrt {2 + \sqrt 2 } = \cos {\pi \over 8}. \cr & \text{và }\sin \left( {x + \frac{\pi }{8}} \right) = \cos \left( {\frac{\pi }{2} - x - \frac{\pi }{8}} \right) \cr &= \cos \left( {\frac{{3\pi }}{8} - x} \right) = \cos \left( {x - \frac{{3\pi }}{8}} \right) \cr & \text{Vậy }\,C = \sqrt {4 - 2\sqrt 2 } \cr} \)
Câu 1 trang 223 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng kiến thức về đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững phương pháp giải bài toán này là nền tảng quan trọng cho các bài toán phức tạp hơn trong chương trình học.
Thông thường, Câu 1 trang 223 sẽ đưa ra một hàm số cụ thể và yêu cầu:
Để giải quyết bài toán này một cách hiệu quả, học sinh cần thực hiện theo các bước sau:
Giả sử hàm số cho trong Câu 1 trang 223 là: y = x3 - 3x2 + 2
Bước 1: Tập xác định: D = R
Bước 2: Đạo hàm: y' = 3x2 - 6x; y'' = 6x - 6
Bước 3: Điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2. Tại x = 0, y' đổi dấu từ dương sang âm => cực đại. Tại x = 2, y' đổi dấu từ âm sang dương => cực tiểu.
Bước 4: Khoảng đồng biến, nghịch biến: y' > 0 khi x < 0 hoặc x > 2 => hàm số đồng biến trên (-∞, 0) và (2, +∞). y' < 0 khi 0 < x < 2 => hàm số nghịch biến trên (0, 2).
Bước 5: Điểm uốn: 6x - 6 = 0 => x = 1. Tại x = 1, y'' đổi dấu => điểm uốn.
Bước 6: Vẽ đồ thị dựa trên các thông tin trên.
Khi giải bài toán này, học sinh cần chú ý:
Học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về phương pháp giải bài toán này:
Câu 1 trang 223 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng giải toán về hàm số và đạo hàm. Bằng cách nắm vững phương pháp giải và thực hành thường xuyên, học sinh có thể tự tin giải quyết các bài toán tương tự trong các kỳ thi.