Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, tập xác định và tập giá trị để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho các hàm số sau :
\(y = - {\sin ^2}x\)
Lời giải chi tiết:
Với \(k \in\mathbb Z\) ta có :
\(\begin{array}{l}f\left( x \right) = - {\sin ^2}x\\ = - \frac{{1 - \cos 2x}}{2} = \frac{{\cos 2x - 1}}{2}\\ \Rightarrow f\left( {x + k\pi } \right)\\ = \frac{{\cos \left[ {2\left( {x + k\pi } \right)} \right] - 1}}{2}\\ = \frac{{\cos \left( {2x + k2\pi } \right) - 1}}{2}\\ = \frac{{\cos 2x - 1}}{2}\\ = f\left( x \right)\end{array}\)
Lời giải chi tiết:
Với \(k \in\mathbb Z\) ta có :
\(\eqalign{& f\left( x \right) = 3{\tan ^2}x + 1 \cr & f\left( {x + k\pi } \right) = 3{\tan ^2}\left( {x + k\pi } \right) + 1 \cr&= 3{\tan ^2}x + 1 = f\left( x \right) \cr} \)
\(y = \sin x\cos x\)
Lời giải chi tiết:
Với \(k \in\mathbb Z\) ta có :
\(f(x) = \sin x\cos x\)
\(\eqalign{& f\left( {x + k\pi } \right) = \sin \left( {x + k\pi } \right).\cos \left( {x + k\pi } \right) \cr&= {\left( { - 1} \right)^k}\sin x.{\left( { - 1} \right)^k}\cos x \cr & = {\left( { - 1} \right)^{2k}}\sin x\cos x\cr&= \sin x\cos x = f\left( x \right) \cr} \)
Cách khác:
\(\begin{array}{l}f\left( x \right) = \sin x\cos x\\ = \frac{1}{2}.2\sin x\cos x = \frac{1}{2}\sin 2x\\ \Rightarrow f\left( {x + k\pi } \right)\\ = \frac{1}{2}\sin \left[ {2\left( {x + k\pi } \right)} \right]\\ = \frac{1}{2}\sin \left( {2x + k2\pi } \right)\\ = \frac{1}{2}\sin 2x\\=f(x)\end{array}\)
\(y = \sin x\cos x + {{\sqrt 3 } \over 2}\cos 2x\)
Lời giải chi tiết:
Với \(k \in\mathbb Z\) ta có :
\(\eqalign{& f\left( x \right) = \sin x\cos x + {{\sqrt 3 } \over 2}\cos 2x \cr & f\left( {x + k\pi } \right) \cr&= \sin \left( {x + k\pi } \right)\cos \left( {x + k\pi } \right) \cr&+ {{\sqrt 3 } \over 2}\cos \left( {2x + k2\pi } \right) \cr & = {\left( { - 1} \right)^k}\sin x{\left( { - 1} \right)^k}\cos x + {{\sqrt 3 } \over 2}\cos 2x \cr&= \sin x\cos x + {{\sqrt 3 } \over 2}\cos 2x = f\left( x \right) \cr} \)
Cách khác:
\(\begin{array}{l}f\left( x \right) = \sin x\cos x + \frac{{\sqrt 3 }}{2}\cos 2x\\ = \frac{1}{2}.2\sin x\cos x + \frac{{\sqrt 3 }}{2}\cos 2x\\ = \frac{1}{2}\sin 2x + \frac{{\sqrt 3 }}{2}\cos 2x\\ \Rightarrow f\left( {x + k\pi } \right)\\ = \frac{1}{2}\sin \left[ {2\left( {x + k\pi } \right)} \right] + \frac{{\sqrt 3 }}{2}\cos \left[ {2\left( {x + k\pi } \right)} \right]\\ = \frac{1}{2}\sin \left( {2x + k2\pi } \right) + \frac{{\sqrt 3 }}{2}\cos \left( {2x + k2\pi } \right)\\ = \frac{1}{2}\sin 2x + \frac{{\sqrt 3 }}{2}\cos 2x\\ = f\left( x \right)\end{array}\)
Câu 8 trang 16 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học Đại số và Giải tích lớp 11, tập trung vào việc rèn luyện kỹ năng xác định tập xác định của hàm số. Đây là một phần kiến thức nền tảng, quan trọng để học sinh có thể tiếp cận các bài toán phức tạp hơn trong chương trình học.
Bài tập yêu cầu học sinh xác định tập xác định của các hàm số sau:
Để giải quyết bài tập này, học sinh cần nắm vững các quy tắc sau:
Để hàm số y = √(2x - 1) xác định, điều kiện là 2x - 1 ≥ 0. Giải bất phương trình này, ta được:
2x ≥ 1
x ≥ 1/2
Vậy, tập xác định của hàm số là D = [1/2, +∞).
Để hàm số y = 1 / (x - 3) xác định, điều kiện là x - 3 ≠ 0. Giải phương trình này, ta được:
x ≠ 3
Vậy, tập xác định của hàm số là D = R \ {3} (tập hợp tất cả các số thực trừ 3).
Để hàm số y = √(x + 2) / (x - 1) xác định, cần có hai điều kiện:
Vậy, tập xác định của hàm số là D = [-2, 1) ∪ (1, +∞).
Để hàm số y = x / (x² - 4) xác định, điều kiện là x² - 4 ≠ 0. Giải phương trình này, ta được:
x² ≠ 4
x ≠ ±2
Vậy, tập xác định của hàm số là D = R \ {-2, 2} (tập hợp tất cả các số thực trừ -2 và 2).
Việc xác định tập xác định của hàm số có vai trò quan trọng trong nhiều lĩnh vực của toán học, bao gồm:
Để củng cố kiến thức về tập xác định của hàm số, bạn có thể luyện tập thêm các bài tập sau:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, bạn đã hiểu rõ cách giải Câu 8 trang 16 SGK Đại số và Giải tích 11 Nâng cao. Chúc bạn học tập tốt!