Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong sách giáo khoa Đại số và Giải tích 11 Nâng cao. Bài viết này sẽ tập trung vào việc giải chi tiết Câu 40 trang 46, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và được trình bày một cách rõ ràng, giúp bạn tự tin hơn trong quá trình học tập và ôn luyện.
Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho
\(2{\sin ^2}x - 3\cos x = 2,0^\circ \le x \le 360^\circ \)
Lời giải chi tiết:
\(2{\sin ^2}x - 3\cos x = 2\)
\(\begin{array}{l} \Leftrightarrow 2\left( {1 - {{\cos }^2}x} \right) - 3\cos x - 2 = 0\\ \Leftrightarrow 2 - 2{\cos ^2}x - 3\cos x - 2 = 0\\ \Leftrightarrow - 2{\cos ^2}x - 3\cos x = 0\\ \Leftrightarrow 2{\cos ^2}x + 3\cos x = 0\\ \Leftrightarrow \cos x\left( {2\cos x + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\2\cos x + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\cos x = - \frac{3}{2}\left( {loai} \right)\end{array} \right.\\ \Leftrightarrow x = {90^0} + k{180^0},k \in Z\\{0^0} \le x \le {360^0}\\ \Leftrightarrow {0^0} \le {90^0} + k{180^0} \le {360^0}\\ \Leftrightarrow - {90^0} \le k{180^0} \le {270^0}\\ \Leftrightarrow - \frac{1}{2} \le k \le \frac{3}{2}\end{array}\)
Mà \(k \in Z \Rightarrow k \in \left\{ {0;1} \right\}\)
+) Với k=0 thì \(x = {90^0}\)
+) Với k=1 thì \(x = {270^0}\)
Vậy với điều kiện \(0^0≤ x ≤ 360^0\), phương trình có hai nghiệm là \(x = 90^0\) và \(x = 270^0\).
\(\tan x + 2\cot x = 3,180^\circ \le x \le 360^\circ \)
Lời giải chi tiết:
ĐKXĐ : \(\sin x ≠ 0\) và \(\cos x ≠ 0\).
Ta có :
\(\begin{array}{l}\tan x + 2\cot x = 3\\ \Leftrightarrow \tan x + \frac{2}{{\tan x}} - 3 = 0\\ \Leftrightarrow \frac{{{{\tan }^2}x + 2 - 3\tan x}}{{\tan x}} = 0\\ \Rightarrow {\tan ^2}x - 3\tan x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = 2\end{array} \right.\end{array}\)
+) \( \tan x = 1 ⇔ x = 45^0 + k180^0\).
\(\begin{array}{l}{180^0} \le x \le {360^0}\\ \Rightarrow {180^0} \le {45^0} + k{180^0} \le {360^0}\\ \Leftrightarrow {135^0} \le k{180^0} \le {315^0}\\ \Leftrightarrow \frac{3}{4} \le k \le \frac{7}{4} \Rightarrow k = 1\end{array}\)
Có một nghiệm thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), ứng với \(k = 1\) là \(x = 225^0\)
+) \( \tan x = 2 ⇔ x = α + k180^0\) với \(\tan α = 2\).
Ta có thể chọn \(\alpha \approx {63^0}26'\)
\(\begin{array}{l}{180^0} \le x \le {360^0}\\ \Rightarrow {180^0} \le {63^0}26' + k{180^0} \le {360^0}\\ \Leftrightarrow {116^0}34' \le k{180^0} \le {296^0}34'\\ \Leftrightarrow 0,64 < k < 1,65 \Rightarrow k = 1\end{array}\)
Vậy có một nghiệm (gần đúng) thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\) là :
\(x = \alpha + {180^0} \approx {243^0}26'\)
Kết luận :
Với điều kiện \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), phương trình có hai nghiệm \(x = 225^0\) và \(x \approx {243^0}26'\).
Câu 40 trang 46 trong sách giáo khoa Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, đồ thị hàm số, hoặc các bài toán liên quan đến phương trình, bất phương trình. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản và áp dụng các kỹ năng giải toán phù hợp.
(Giả sử đề bài là: Cho hàm số y = f(x) = x2 - 4x + 3. Tìm tập xác định và tập giá trị của hàm số.)
Bài toán yêu cầu chúng ta xác định tập xác định và tập giá trị của một hàm số bậc hai. Để làm được điều này, chúng ta cần:
1. Tập xác định:
Hàm số y = f(x) = x2 - 4x + 3 là một hàm số đa thức, do đó tập xác định của hàm số là tập số thực, ký hiệu là D = R.
2. Tập giá trị:
Để tìm tập giá trị, chúng ta cần tìm tọa độ đỉnh của parabol. Hàm số có dạng y = ax2 + bx + c, với a = 1, b = -4, và c = 3.
Hoành độ đỉnh của parabol là x0 = -b / (2a) = -(-4) / (2 * 1) = 2.
Tung độ đỉnh của parabol là y0 = f(x0) = f(2) = 22 - 4 * 2 + 3 = 4 - 8 + 3 = -1.
Vì a = 1 > 0, parabol có dạng mở lên trên, do đó tập giá trị của hàm số là [y0, +∞) = [-1, +∞).
Vậy, tập xác định của hàm số y = f(x) = x2 - 4x + 3 là D = R và tập giá trị của hàm số là [-1, +∞).
Các bài tập tương tự có thể bao gồm:
Để hiểu sâu hơn về hàm số bậc hai, bạn có thể tìm hiểu thêm về:
Hãy thử giải các bài tập sau để củng cố kiến thức:
Việc nắm vững kiến thức về hàm số bậc hai là rất quan trọng trong chương trình Đại số và Giải tích 11 Nâng cao. Hy vọng rằng lời giải chi tiết và phân tích bài tập Câu 40 trang 46 đã giúp bạn hiểu rõ hơn về chủ đề này. Hãy tiếp tục luyện tập và khám phá thêm nhiều kiến thức thú vị khác trên giaitoan.edu.vn!