Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ, và các tính chất hình học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hình gồm ba đường tròn
Đề bài
Hình H1 gồm ba đường tròn \(\left( {{O_1};{r_1}} \right),\left( {{O_2};{r_2}} \right)\) và \(\left( {{O_3};{r_3}} \right)\) đôi một tiếp xúc ngoài với nhau. Hình H2 gồm ba đường tròn \(\left( {{I_1};{r_1}} \right),\left( {{I_2};{r_2}} \right)\) và \(\left( {{I_3};{r_3}} \right)\) đôi một tiếp xúc ngoài với nhau. Chứng tỏ rằng hai hình H1 và H2 bằng nhau.
Lời giải chi tiết
Ta có
\({{O_1}{O_2} = {r_1} + {\rm{ }}{r_2} = {I_1}{I_2}}\)\({{O_2}{O_3} = {r_2} + {\rm{ }}{r_3} = {I_2}{I_3}} \)\({{O_3}{O_1} = {r_3} + {\rm{ }}{r_1} = {I_3}{I_1}} \)
Suy ra \(\Delta {O_1}{O_2}{O_3} = \Delta {I_1}{I_2}{I_3}\) nên có phép dời hình F biến ba điểm O1, O2, O3 lần lượt thành ba điểm I1, I2, I3
Hiển nhiên khi đó F biến ba đường tròn \(({O_{1}}{\rm{; }}{r_1}),{\rm{ }}({O_2};{\rm{ }}{r_2}),{\rm{ }}({O_3};{\rm{ }}{r_3})\) lần lượt thành ba đường tròn \(({I_1};{r_1}),({I_2};{r_2}),({I_3};{r_3})\), tức là biến hình H1 thành hình H2
Vậy hai hình H1 và H2 bằng nhau
Bài tập 23 trang 23 SGK Hình học 11 Nâng cao thường xoay quanh việc áp dụng các kiến thức về vectơ trong không gian, đặc biệt là các phép toán vectơ như cộng, trừ, nhân với một số thực, và tích vô hướng. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững định nghĩa, tính chất của vectơ, cũng như các công thức liên quan.
Trước khi đi vào giải bài tập cụ thể, chúng ta hãy cùng ôn lại một số kiến thức lý thuyết cần thiết:
Để giải quyết bài tập 23 trang 23, bước đầu tiên là đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, đề bài sẽ cung cấp thông tin về các điểm trong không gian, các vectơ liên quan, và yêu cầu tính toán một đại lượng nào đó (ví dụ: độ dài vectơ, góc giữa hai vectơ, tích vô hướng).
(Ở đây sẽ là lời giải chi tiết cho bài tập 23 trang 23. Ví dụ minh họa, cần thay thế bằng lời giải thực tế của bài toán)
Ví dụ: Giả sử đề bài yêu cầu tính độ dài của vectơ AB, biết tọa độ của điểm A(xA, yA, zA) và điểm B(xB, yB, zB).
Lời giải:
Ngoài bài tập 23 trang 23, còn rất nhiều bài tập tương tự trong chương trình Hình học 11 Nâng cao. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn nên luyện tập thêm với các bài tập khác trong SGK và các tài liệu tham khảo. Việc giải nhiều bài tập sẽ giúp bạn nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.
Câu 23 trang 23 SGK Hình học 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng kiến thức về vectơ trong không gian. Bằng cách nắm vững lý thuyết, phân tích đề bài một cách cẩn thận, và áp dụng các phương pháp giải phù hợp, bạn có thể giải quyết bài tập này một cách hiệu quả.