Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi đồ thị để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Giải các phương trình sau :
\(\sin 2x + {\sin ^2}x = {1 \over 2}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& \sin 2x + {\sin ^2}x = {1 \over 2} \cr & \Leftrightarrow \sin 2x + {1 \over 2}\left( {1 - \cos 2x} \right) = {1 \over 2} \cr & \Leftrightarrow \sin 2x - {1 \over 2}\cos 2x = 0 \cr & \Leftrightarrow \tan 2x = {1 \over 2} \cr & \Leftrightarrow 2x = \alpha + k\pi \,\text{ với }\,\tan \alpha = {1 \over 2} \cr & \Leftrightarrow x = {\alpha \over 2} + k{\pi \over 2},\,k \in\mathbb Z \cr} \)
\(2{\sin ^2}x + 3\sin x\cos x + {\cos ^2}x = 0\)
Lời giải chi tiết:
\(x = {\pi \over 2} + k\pi \) không là nghiệm phương trình.
Chia hai vế phương trình cho \({\cos ^2}x\) ta được :
\(\eqalign{& 2{\tan ^2}x + 3\tan x + 1 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = - 1} \cr {\tan x = - {1 \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = - {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right.\,\left( {k \in\mathbb Z} \right) \cr & \left( {\text{ với }\,\tan \alpha = - {1 \over 2}} \right) \cr} \)
\({\sin ^2}{x \over 2} + \sin x - 2{\cos ^2}{x \over 2} = {1 \over 2}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& {\sin ^2}{x \over 2} + \sin x - 2{\cos ^2}{x \over 2} = {1 \over 2} \cr & \Leftrightarrow {\sin ^2}{x \over 2} + 2\sin {x \over 2}\cos {x \over 2} - 2{\cos ^2}{x \over 2} = {1 \over 2} \cr} \)
Với \(x\) mà \(\cos {x \over 2} = 0\) không là nghiệm phương trình.
Chia hai vế phương trình cho \({\cos ^2}{x \over 2}\) ta được :
\(\eqalign{& {\tan ^2}{x \over 2} + 2\tan {x \over 2} - 2 = {1 \over 2}\left( {1 + {{\tan }^2}{x \over 2}} \right) \cr & \Leftrightarrow {\tan ^2}{x \over 2} + 4\tan {x \over 2} - 5 = 0 \cr & \Leftrightarrow \left[ {\matrix{{\tan {x \over 2} = 1} \cr {\tan {x \over 2} = - 5} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{x \over 2} = {\pi \over 4} + k\pi } \cr {{x \over 2} = \alpha + k\pi } \cr} } \right.\,\left( {\text{ với }\,\tan \alpha = - 5} \right) \cr & \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k2\pi } \cr {x = 2\alpha + k2\pi } \cr} } \right.\,\left( {k \in\mathbb Z} \right) \cr} \)
Câu 47 trang 48 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ yêu cầu:
(Ở đây sẽ là lời giải chi tiết cho câu 47 trang 48, bao gồm các bước giải, giải thích rõ ràng và sử dụng các công thức toán học cần thiết. Ví dụ:)
Giả sử đề bài yêu cầu tìm tọa độ đỉnh của parabol y = x2 - 4x + 3.
Ngoài câu 47 trang 48, còn rất nhiều bài tập tương tự trong SGK Đại số và Giải tích 11 Nâng cao. Các bài tập này thường yêu cầu học sinh:
Để giải tốt các bài tập về hàm số bậc hai, bạn có thể tham khảo một số mẹo sau:
Câu 47 trang 48 SGK Đại số và Giải tích 11 Nâng cao là một bài tập điển hình về hàm số bậc hai. Việc giải bài tập này không chỉ giúp bạn củng cố kiến thức mà còn rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn khi đối mặt với các bài toán tương tự.
Công thức | Mô tả |
---|---|
xI = -b/2a | Hoành độ đỉnh của parabol |
yI = -Δ/4a | Tung độ đỉnh của parabol |
Δ = b2 - 4ac | Biệt thức của phương trình bậc hai |