Logo Header
  1. Môn Toán
  2. Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao

Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao

Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học.

Bài toán này thường yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm, hoặc các khái niệm khác đã học để giải quyết.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Trên tia Ox

Đề bài

Trên tia Ox lấy các điểm A1, A2, …, An, … sao cho với mỗi số nguyên dương n, OAn = n. Trong cùng một nửa mặt phẳng có bờ là đường thẳng chứa tia Ox, vẽ các nửa đường tròn đường kính OAn, n = 1, 2, … . Kí hiệu u1 là diện tích của nửa hình tròn đường kính OA1 và với mỗi n ≥ 2, kí hiệu un là diện tích của hình giới hạn bởi nửa đường tròn đường kính OAn – 1 , nửa đường tròn đường kính OAn và tia Ox (h 3.3). Chứng minh rằng dãy số (un) là một cấp số cộng. Hãy xác định công sai của cấp số cộng đó.

Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao 1

Lời giải chi tiết

Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao 2

Với \(n ≥ 2\) ta có :

Diện tích nửa đường tròn đường kính \(OA_n\) là: \({S_n} = \frac{1}{2}\pi .{\left( {\frac{{O{A_n}}}{2}} \right)^2} = \frac{1}{8}\pi {n^2}\)

Diện tích nửa đường tròn đường kính \(OA_{n-1}\) là: \({S_{n-1}} = \frac{1}{2}\pi .{\left( {\frac{{O{A_{n-1}}}}{2}} \right)^2} = \frac{1}{8}\pi {(n-1)^2}\)

Do đó,

\(\eqalign{& {u_n} ={S_n} - {S_{n-1}}\cr& = \frac{1}{8}\pi {n^2} - \frac{1}{8}\pi {\left( {n - 1} \right)^2} \cr & = {1 \over 8}\pi \left[ {\left( {{n^2} - {{\left( {n - 1} \right)}^2}} \right)} \right] \cr & = \frac{1}{8}\pi \left( {{n^2} - {n^2} + 2n - 1} \right)\cr&= {{\left( {2n - 1} \right)\pi } \over 8}\,\left( {n \ge 2} \right) \cr & \Rightarrow {u_{n + 1}} - {u_n} \cr&= {{2n + 1} \over 8}\pi - {{\left( {2n - 1} \right)} \over 8}\pi \cr&= {\pi \over 4},\forall n \ge 2 \cr} \)

Mặt khác

\({u_2} - {u_1} = {{3\pi } \over 8} - {\pi \over 8} = {\pi \over 4}\)

Vậy \({u_{n + 1}} - {u_n} = {\pi \over 4}\;\forall n \in\mathbb N^*\)

Do đó (un) là cấp số cộng với công sai \(d = {\pi \over 4}.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải Chi Tiết Câu 20 Trang 114 SGK Đại số và Giải tích 11 Nâng cao

Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao thường thuộc các dạng bài tập về ứng dụng đạo hàm để khảo sát hàm số, tìm cực trị, hoặc giải phương trình, bất phương trình. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, điều kiện cần và đủ để hàm số đạt cực trị, và các phương pháp giải phương trình, bất phương trình thường gặp.

Phân Tích Đề Bài

Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Xác định hàm số cần khảo sát, các điều kiện ràng buộc, và mục tiêu cần đạt được (ví dụ: tìm cực trị, tìm khoảng đơn điệu, giải phương trình). Việc phân tích đề bài kỹ lưỡng sẽ giúp bạn định hướng giải quyết bài toán một cách chính xác.

Các Bước Giải Chi Tiết

  1. Bước 1: Tính đạo hàm cấp nhất (f'(x)) của hàm số. Đây là bước quan trọng để xác định các điểm cực trị của hàm số.
  2. Bước 2: Tìm các điểm cực trị của hàm số. Giải phương trình f'(x) = 0 để tìm các điểm nghi ngờ là cực trị.
  3. Bước 3: Xác định loại cực trị (cực đại hoặc cực tiểu). Sử dụng dấu của đạo hàm cấp hai (f''(x)) hoặc xét dấu của đạo hàm cấp nhất (f'(x)) trên các khoảng xác định để xác định loại cực trị.
  4. Bước 4: Tìm các khoảng đơn điệu của hàm số. Dựa vào dấu của đạo hàm cấp nhất (f'(x)) để xác định các khoảng mà hàm số đồng biến hoặc nghịch biến.
  5. Bước 5: Vẽ đồ thị hàm số (nếu yêu cầu). Sử dụng các thông tin đã tìm được (cực trị, khoảng đơn điệu, giao điểm với các trục tọa độ) để vẽ đồ thị hàm số.

Ví Dụ Minh Họa

Giả sử đề bài yêu cầu khảo sát hàm số y = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước giải trên để giải quyết bài toán này.

Bước 1: Tính đạo hàm cấp nhất: y' = 3x2 - 6x

Bước 2: Tìm các điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.

Bước 3: Xác định loại cực trị: y'' = 6x - 6. Tại x = 0, y'' = -6 < 0, nên hàm số đạt cực đại tại x = 0. Tại x = 2, y'' = 6 > 0, nên hàm số đạt cực tiểu tại x = 2.

Bước 4: Tìm các khoảng đơn điệu: Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).

Lưu Ý Quan Trọng

  • Luôn kiểm tra điều kiện xác định của hàm số trước khi thực hiện các phép toán.
  • Sử dụng các công thức đạo hàm một cách chính xác.
  • Phân tích kết quả một cách cẩn thận và đưa ra kết luận phù hợp.

Ứng Dụng Thực Tế

Các bài toán về ứng dụng đạo hàm để khảo sát hàm số có nhiều ứng dụng thực tế trong các lĩnh vực như kinh tế, kỹ thuật, và khoa học tự nhiên. Ví dụ, trong kinh tế, đạo hàm có thể được sử dụng để tìm điểm tối ưu hóa lợi nhuận hoặc chi phí. Trong kỹ thuật, đạo hàm có thể được sử dụng để tính tốc độ thay đổi của các đại lượng vật lý.

Bài Tập Tương Tự

Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong SGK Đại số và Giải tích 11 Nâng cao hoặc các tài liệu tham khảo khác. Hãy chú trọng vào việc phân tích đề bài, áp dụng các bước giải một cách chính xác, và kiểm tra kết quả.

Kết Luận

Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán về ứng dụng đạo hàm. Bằng cách nắm vững các kiến thức cơ bản và áp dụng các bước giải một cách cẩn thận, bạn có thể tự tin giải quyết bài toán này và các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 11