Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Một tổ có 8 em nam và 2 em nữ. Người ta cần chọn ra 5 em trong tổ tham dự cuộc thi học sinh thanh lịch của trường. Yêu cầu trong các em được chọn, phải có ít nhất một em nữ. Hỏi có bao nhiêu cách chọn ?
Đề bài
Một tổ có 8 em nam và 2 em nữ. Người ta cần chọn ra 5 em trong tổ tham dự cuộc thi học sinh thanh lịch của trường. Yêu cầu trong các em được chọn, phải có ít nhất một em nữ. Hỏi có bao nhiêu cách chọn?
Lời giải chi tiết
Số cách chọn 5 em trong 10 em là :\(C_{10}^5.\)
Số cách chọn 5 em toàn nam là : \(C_{8}^5.\)
Do đó số cách chọn ít nhất một nữ là : \(C_{10}^5 - C_8^5 = 196.\)
Cách khác:
Các em có thể tính trực tiếp như sau:
TH1: Có 1 nữ, 4 nam
Chọn 1 nữ có 2 cách.
Chọn 4 trong 8 nam có \(C_8^4 = 70\) cách chọn.
Theo quy tắc nhân có 2.70=140 cách chọn.
TH2: Có 2 nữ, 3 nam.
Chọn 2 nữ có 1 cách.
Chọn 3 trong 8 nam có \(C_8^3 = 56\) cách chọn.
Theo quy tắc nhân có 1.56=56 cách chọn.
Vậy theo quy tắc cộng có: 140+56=196 cách chọn.
Câu 15 trang 64 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ I, lớp 11. Bài toán này thường liên quan đến việc xác định tính đơn điệu của hàm số, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc khảo sát hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:
Trước khi bắt tay vào giải bài tập, chúng ta cần đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và lập kế hoạch giải cụ thể. Điều này giúp chúng ta tránh được những sai sót không đáng có và tiết kiệm thời gian.
Thông thường, để giải Câu 15 trang 64, bạn cần:
(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Hãy xét tính đơn điệu của hàm số.)
Bước 1: Tập xác định
Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.
Bước 2: Tính đạo hàm
y' = 3x2 - 6x
Bước 3: Xét dấu đạo hàm
Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
Lập bảng xét dấu:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | ↗ | ↘ | ↗ |
Bước 4: Kết luận
Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
Hàm số nghịch biến trên khoảng (0; 2).
Ngoài Câu 15 trang 64, còn rất nhiều bài tập tương tự trong SGK Đại số và Giải tích 11 Nâng cao. Các bài tập này thường yêu cầu học sinh:
Để giải tốt các bài tập Đại số và Giải tích 11 Nâng cao, bạn nên:
Câu 15 trang 64 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và các phép biến đổi hàm số. Hy vọng với lời giải chi tiết và các hướng dẫn trên, bạn đã hiểu rõ cách giải bài tập này và tự tin hơn trong quá trình học tập.