Chào mừng bạn đến với bài giải chi tiết Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao tại giaitoan.edu.vn. Bài viết này sẽ cung cấp lời giải chính xác, dễ hiểu, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, hỗ trợ bạn trong quá trình chinh phục môn Toán.
Cho phương trình
Chứng minh rằng \(x = {\pi \over 2} + k\pi \) nghiệm đúng phương trình.
Lời giải chi tiết:
Ta có: \(\sin \left( {\frac{\pi }{2} + k\pi } \right) = {\left( { - 1} \right)^k}\)
(nghĩa là bằng 1 nếu k chẵn, bằng -1 nếu k lẻ)
Thay \(x = {\pi \over 2} + k\pi \) vào phương trình ta được :
\(\begin{array}{l}\frac{{{{\sin }^3}\left( {\frac{\pi }{2} + k\pi } \right) + {{\cos }^3}\left( {\frac{\pi }{2} + k\pi } \right)}}{{2\cos \left( {\frac{\pi }{2} + k\pi } \right) - \sin \left( {\frac{\pi }{2} + k\pi } \right)}} = \cos \left[ {2\left( {\frac{\pi }{2} + k\pi } \right)} \right]\\ \Leftrightarrow \frac{{{{\left( { - 1} \right)}^{3k}} + 0}}{{2.0 - {{\left( { - 1} \right)}^k}}} = \cos \left( {\pi + k2\pi } \right)\\ \Leftrightarrow \frac{{{{\left( { - 1} \right)}^{3k}}}}{{ - {{\left( { - 1} \right)}^k}}} = \cos \pi \\ \Leftrightarrow - {\left( { - 1} \right)^{2k}} = - 1\\ \Leftrightarrow - 1 = - 1\end{array}\)
Vậy \(x = {\pi \over 2} + k\pi \) là nghiệm phương trình
Giải phương trình bằng cách đặt \(\tan x = t\) (khi \(x \ne {\pi \over 2} + k\pi \) )
Lời giải chi tiết:
* \(x = {\pi \over 2} + k\pi \) là nghiệm phương trình.
* Với \(x \ne {\pi \over 2} + k\pi \) chia tử và mẫu của vế trái cho \({\cos ^3}x\) ta được :
\({{{{\tan }^3}x + 1} \over {2\left( {1 + {{\tan }^2}x} \right) - \tan x\left( {1 + {{\tan }^2}x} \right)}} = {{1 - {{\tan }^2}x} \over {1 + {{\tan }^2}x}}\)
Đặt \(t = \tan x\) ta được :
\(\eqalign{& {{{t^3} + 1} \over {\left( {2 - t} \right)\left( {1 + {t^2}} \right)}} = {{1 - {t^2}} \over {1 + {t^2}}} \cr & \Leftrightarrow {t^3} + 1 = \left( {{t^2} - 1} \right)\left( {t - 2} \right) \cr & \Leftrightarrow {t^3} + 1 = {t^3} - 2{t^2} - t + 2 \cr & \Leftrightarrow 2{t^2} + t - 1 = 0 \Leftrightarrow \left[ {\matrix{{t = - 1} \cr {t = {1 \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{\tan x = - 1} \cr {\tan x = {1 \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right. \cr & \text{ với }\,\tan \alpha = {1 \over 2} \cr} \)
Vậy phương trình đã cho có nghiệm :\(x = {\pi \over 2} + k\pi ,x = - {\pi \over 4} + k\pi ,\) \(x = \alpha + k\pi \,\left( {k \in\mathbb Z} \right)\)
Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, đồ thị hàm số, phương trình, bất phương trình, hoặc các bài toán liên quan đến lượng giác. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững kiến thức cơ bản về các khái niệm và công thức liên quan.
(Giả định đề bài: Cho hàm số y = f(x) = x2 - 4x + 3. Tìm tập xác định và tập giá trị của hàm số.)
Đề bài yêu cầu tìm tập xác định và tập giá trị của hàm số bậc hai. Để tìm tập xác định, ta cần xem xét xem có điều kiện nào về x hay không. Đối với hàm số bậc hai, tập xác định thường là tập số thực (R). Để tìm tập giá trị, ta cần tìm giá trị nhỏ nhất hoặc lớn nhất của hàm số. Hàm số bậc hai có dạng y = ax2 + bx + c, với a ≠ 0. Nếu a > 0, hàm số có giá trị nhỏ nhất tại đỉnh parabol. Nếu a < 0, hàm số có giá trị lớn nhất tại đỉnh parabol.
Vậy, tập xác định của hàm số y = x2 - 4x + 3 là D = R và tập giá trị của hàm số là T = [-1, +∞).
Để hiểu sâu hơn về hàm số bậc hai, bạn có thể thực hành giải thêm các bài tập tương tự. Hãy chú ý đến việc xác định hệ số a, b, c và áp dụng công thức tìm đỉnh parabol để tìm giá trị lớn nhất hoặc nhỏ nhất của hàm số.
Khi giải các bài tập về hàm số bậc hai, bạn cần lưu ý những điều sau:
Để nâng cao kiến thức về hàm số bậc hai, bạn có thể tham khảo các tài liệu sau:
Hy vọng bài giải chi tiết này sẽ giúp bạn hiểu rõ hơn về Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao. Chúc bạn học tập tốt!