Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Tìm các giới hạn sau :
\(\displaystyle \lim \left( {2 + {{{{\left( { - 1} \right)}^n}} \over {n + 2}}} \right)\)
Phương pháp giải:
Sử dụng phương pháp đánh giá và giới hạn kẹp:
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\). Nếu \(\left| {{u_n}} \right| \le {v_n}, \forall n\) mà \(\lim {v_n} = 0\) thì \(\lim {u_n} = 0\).
Và định nghĩa \(\lim \left( {{u_n} - L} \right) = 0\) thì \(\lim u_n=L\).
Lời giải chi tiết:
Đặt \(\displaystyle {u_n} = 2 + {{{{\left( { - 1} \right)}^n}} \over {n + 2}}\) \(\Rightarrow {u_n} - 2 = \dfrac{{{{\left( { - 1} \right)}^n}}}{{n + 2}}\)
Ta có:
\(\displaystyle \eqalign{& \left| {{u_n} - 2} \right| = \left| {\frac{{{{\left( { - 1} \right)}^n}}}{{n + 2}}} \right|= {1 \over {n + 2}} < {1 \over n}\cr &\text{ và }\,\lim {1 \over n} = 0 \cr & \Rightarrow \lim \left( {{u_n} - 2} \right) = 0 \Rightarrow \lim {u_n} = 2 \cr} \)
\(\displaystyle \lim \left( {{{\sin 3n} \over {4n}} - 1} \right)\)
Phương pháp giải:
Sử dụng phương pháp đánh giá và giới hạn kẹp:
Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\). Nếu \(\left| {{u_n}} \right| \le {v_n}, \forall n\) mà \(\lim {v_n} = 0\) thì \(\lim {u_n} = 0\).
Lời giải chi tiết:
Đặt \(\displaystyle {u_n} = {{\sin 3n} \over {4n}} - 1\) \( \Rightarrow {u_n} + 1 = \dfrac{{\sin 3n}}{{4n}}\)
Ta có:
\(\displaystyle \eqalign{& \left| {{u_n} + 1} \right| = \left| {{{\sin 3n} \over {4n}}} \right| \le {1 \over {4n}}\cr &\text{ và }\,\lim {1 \over {4n}} = 0 \cr & \Rightarrow \lim \left( {{u_n} + 1} \right) = 0 \Rightarrow \lim {u_n} = - 1 \cr} \)
\(\displaystyle \lim {{n - 1} \over n}\)
Lời giải chi tiết:
\(\displaystyle \lim {{n - 1} \over n} = \lim \left( {1 - {1 \over n}} \right) \) \(\displaystyle = \lim 1 - \lim {1 \over n} = 1\)
\(\displaystyle \lim {{n + 2} \over {n + 1}}\)
Phương pháp giải:
Chia cả tử và mẫu cho \(n\) và sử dụng giới hạn \(\lim \dfrac{1}{n} = 0\)
Lời giải chi tiết:
\(\displaystyle \lim {{n + 2} \over {n + 1}} = \lim {{n\left( {1 + {2 \over n}} \right)} \over {n\left( {1 + {1 \over n}} \right)}} \) \(\displaystyle = \lim {{1 + {2 \over n}} \over {1 + {1 \over n}}} = {{\lim 1 + \lim {2 \over n}} \over {\lim 1 + \lim {1 \over n}}} \) \(\displaystyle = {{1 + 0} \over {1 + 0}} = 1\)
Cách khác:
\(\begin{array}{l}\lim \frac{{n + 2}}{{n + 1}} = \lim \left( {\frac{{n + 1 + 1}}{{n + 1}}} \right)\\ = \lim \left( {1 + \frac{1}{{n + 1}}} \right)\\ = \lim 1 + \lim \frac{1}{{n + 1}}\\ = 1 + 0 = 1\end{array}\)
Câu 5 trang 134 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định khoảng đồng biến, nghịch biến, cực trị và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Thông thường, đề bài sẽ cung cấp một hàm số cụ thể và yêu cầu chúng ta thực hiện các bước khảo sát hàm số như sau:
Để minh họa, chúng ta sẽ xét một ví dụ cụ thể về hàm số:
f(x) = x3 - 3x2 + 2
Hàm số f(x) = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là R (tập hợp tất cả các số thực).
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
limx→-∞ f(x) = -∞
limx→+∞ f(x) = +∞
Dựa vào các thông tin đã phân tích, ta có thể vẽ được đồ thị hàm số f(x) = x3 - 3x2 + 2. Đồ thị hàm số có dạng đường cong đi qua các điểm cực trị (0, 2) và (2, -2).
Khi giải các bài tập về khảo sát hàm số, bạn cần lưu ý một số điểm sau:
Khảo sát hàm số có nhiều ứng dụng trong thực tế, chẳng hạn như:
Câu 5 trang 134 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng khảo sát hàm số. Bằng cách nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm, bạn có thể giải quyết bài toán này một cách hiệu quả và tự tin hơn trong các kỳ thi.