Logo Header
  1. Môn Toán
  2. Câu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao

Câu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao

Câu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học.

Bài toán này thường yêu cầu học sinh vận dụng các kiến thức về hàm số, đạo hàm, hoặc các chủ đề khác đã được học để tìm ra lời giải chính xác.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho cấp số cộng (un)

Đề bài

Cho cấp số cộng (un) với công sai d và cho các số nguyên dương m và k, với \(m ≥ k\). Chứng minh rằng \({u_m} = {u_k} + \left( {m-k} \right)d\).

Áp dụng : Hãy tìm công sai d của cấp số cộng (un) mà \({u_{18}} - {u_3} = 75\).

Phương pháp giải - Xem chi tiếtCâu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao 1

Viết công thức tính \(u_m,u_k\) theo \(u_1,d\) rồi trừ hai số hạng cho nhau suy ra ĐPCM.

Sử dụng công thức \[{u_n} = {u_1} + \left( {n - 1} \right)d\]

Lời giải chi tiết

Ta có:

\(\eqalign{& {u_m} = {u_1} + \left( {m - 1} \right)d\,\left( 1 \right) \cr & {u_k} = {u_1} + \left( {k - 1} \right)d\,\left( 2 \right) \cr} \)

Lấy (1) trừ (2) ta được :

\({u_m} - {u_k} \)\( = {u_1} + \left( {m - 1} \right)d - {u_1} - \left( {k - 1} \right)d \)\(= \left( {m - 1 - k + 1} \right)d\)\(= \left( {m - k} \right)d\)

\(\Rightarrow {u_m} = {u_k} + \left( {m - k} \right)d\)

Áp dụng :

Ta có:

\(\eqalign{& {u_{18}} - {u_3} = \left( {18 - 3} \right)d = 15d = 75 \cr & \Rightarrow d = 5 \cr} \)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Câu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Câu 24 Trang 115 SGK Đại số và Giải tích 11 Nâng cao: Phân tích Chi Tiết và Lời Giải

Bài toán Câu 24 trang 115 trong sách giáo khoa Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, giới hạn, đạo hàm, hoặc các ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các kỹ năng giải toán liên quan.

I. Tóm Tắt Lý Thuyết Liên Quan

Trước khi đi vào giải chi tiết, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Hàm số: Định nghĩa, tập xác định, tập giá trị, tính đơn điệu, cực trị.
  • Giới hạn: Định nghĩa, các tính chất của giới hạn, giới hạn của hàm số tại một điểm và tại vô cùng.
  • Đạo hàm: Định nghĩa, các quy tắc tính đạo hàm, đạo hàm của các hàm số cơ bản.
  • Ứng dụng của đạo hàm: Khảo sát hàm số (tìm cực trị, điểm uốn, khoảng đồng biến, nghịch biến), giải phương trình, bất phương trình.

II. Phân Tích Đề Bài Câu 24 Trang 115

Để giải quyết bài toán Câu 24 trang 115, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần phân tích đề bài để tìm ra phương pháp giải phù hợp. Thông thường, bài toán sẽ yêu cầu:

  • Tìm tập xác định của hàm số.
  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải phương trình hoặc bất phương trình liên quan đến hàm số.

III. Lời Giải Chi Tiết Câu 24 Trang 115

(Ở đây sẽ là lời giải chi tiết cho bài toán Câu 24 trang 115. Lời giải này sẽ bao gồm các bước giải cụ thể, các phép tính chính xác và các giải thích rõ ràng. Ví dụ, nếu bài toán yêu cầu tìm cực trị của hàm số, lời giải sẽ bao gồm các bước sau:)

  1. Tính đạo hàm f'(x).
  2. Giải phương trình f'(x) = 0 để tìm các điểm cực trị.
  3. Xác định loại cực trị (cực đại hoặc cực tiểu) bằng cách sử dụng dấu của đạo hàm cấp hai f''(x) hoặc bằng cách xét dấu của f'(x) xung quanh các điểm cực trị.
  4. Tính giá trị của hàm số tại các điểm cực trị để tìm tọa độ các điểm cực trị.

IV. Ví Dụ Minh Họa

Để giúp học sinh hiểu rõ hơn về cách giải bài toán Câu 24 trang 115, chúng ta sẽ xem xét một ví dụ minh họa:

(Ở đây sẽ là một ví dụ cụ thể về một bài toán tương tự Câu 24 trang 115, cùng với lời giải chi tiết.)

V. Luyện Tập Thêm

Để củng cố kiến thức và kỹ năng giải toán, học sinh nên luyện tập thêm các bài tập tương tự. Dưới đây là một số bài tập gợi ý:

  • Bài tập 1: Tìm tập xác định của hàm số y = √(x-2).
  • Bài tập 2: Tính đạo hàm của hàm số y = x^3 - 2x^2 + 1.
  • Bài tập 3: Tìm cực trị của hàm số y = x^2 - 4x + 3.

VI. Kết Luận

Câu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng, giúp học sinh rèn luyện các kỹ năng giải toán liên quan đến hàm số, giới hạn, đạo hàm và các ứng dụng của đạo hàm. Bằng cách nắm vững lý thuyết, phân tích đề bài một cách cẩn thận và luyện tập thường xuyên, học sinh có thể tự tin giải quyết bài toán này và các bài toán tương tự.

Hy vọng rằng, với lời giải chi tiết và các ví dụ minh họa trên, các bạn học sinh đã hiểu rõ hơn về cách giải Câu 24 trang 115 SGK Đại số và Giải tích 11 Nâng cao. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11