Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các khái niệm cơ bản như vecto, phép biến hình, và các tính chất của hình không gian để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một tứ diện được gọi là gần đều nếu các cạnh đối bằng nhau từng đôi một. Với tứ diện ABCD, chứng tỏ các tính chất sau là tương đương :
Đề bài
Một tứ diện được gọi là gần đều nếu các cạnh đối bằng nhau từng đôi một. Với tứ diện ABCD, chứng tỏ các tính chất sau là tương đương :
a. Tứ diện ABCD là gần đều ;
b. Các đoạn thẳng nối trung điểm cặp cạnh đối diện đôi một vuông góc với nhau ;
c. Các trọng tuyến (đoạn thẳng nối đỉnh với trọng tâm của mặt đối diện) bằng nhau ;
d. Tổng các góc tại mỗi đỉnh bằng 180˚
Lời giải chi tiết
* Chứng minh a ⇔ b
Gọi M, N, P, Q, E, F lần lượt là trung điểm của AB, CD, BC, AD, AC, BD.
a ⇒ b. Do AC = BD nên MNPQ là hình thoi, vì thế MN ⊥ PQ. Tương tự ta có MN ⊥ EF, PQ ⊥ EF.
b) ⇒ a. MPNQ là hình bình hành mà MN ⊥ PQ nên MPNQ là hình thoi, tức là MP = MQ, từ đó AC = BD.
Tương tự như trên, ta cũng có BC = AD, AB = CD.
* Chứng minh a ⇔ c
Gọi A’, B’ lần lượt là trọng tâm của các tam giác BCD và ACD.
a) ⇒ c. Ta có ΔBCD = ΔADC (c.c.c) nên BN = AN, từ đó A’N = B’N.
Vậy ΔAA’N = ΔBB’N (c.g.c), suy ra AA’ = BB’.
Tương tự như trên, ta có điều phải chứng minh.
c) ⇒ a. Do giả thiết ta có BB’ = AA’, mà AA’ cắt BB’ tại G, AG = 3GA’, BG = 3GB’ (xem BT 22, chương II, SGK), từ đó BG = AG và GA’ = GB’. Các tam giác BGA’ và AGB’ bằng nhau nên BA’ = AB’.
Như vậy BN = AN, mà :
\(\eqalign{ & A{C^2} + A{D^2} = 2A{N^2} + {{C{D^2}} \over 2} \cr & B{C^2} + B{D^2} = 2B{N^2} + {{C{D^2}} \over 2} \cr} \)
Do đó \(A{C^2} + A{D^2} = B{C^2} + B{D^2}\) (1)
Tương tự như trên ta có : \(C{A^2} + C{B^2} = D{A^2} + D{B^2}\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra AD = BC và AC = BD.
Tương tự như trên ta cũng có AB = CD.
* Chứng minh a ⇔ d
a) ⇒ d. Do sự bằng nhau của các tam giác ABC, CDA, BAD với tam giác DCB nên tổng các góc tại B bằng 180˚
Đối với các đỉnh còn lại cũng được lí luận tương tự như trên.
d) ⇒ a. Trải các mặt ABC, ACD, ABD lên mặt phẳng (BCD).
Do tổng các góc tại B cũng như tại C, tại D đều bằng 180˚ nên các bộ ba điểm A1, C, A2; A2, D, A3; A3, B, A1 là những bộ ba điểm thẳng hàng.
Như vậy, BC, CD, BD là ba đường trung bình của tam giác A1A2A3. Từ đó BD = A1C = CA2 = CA. Tương tự ta cũng có AD = BC, CD = AB.
Câu 7 trang 121 SGK Hình học 11 Nâng cao thuộc chương trình học Hình học không gian, cụ thể là phần liên quan đến đường thẳng và mặt phẳng trong không gian. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, đề bài sẽ cung cấp thông tin về các điểm, đường thẳng, mặt phẳng trong không gian và yêu cầu tính toán một đại lượng nào đó, chẳng hạn như góc, khoảng cách, hoặc chứng minh một mối quan hệ nào đó.
Để giải Câu 7 trang 121 SGK Hình học 11 Nâng cao, bạn có thể áp dụng các phương pháp sau:
(Ở đây sẽ là lời giải chi tiết của Câu 7 trang 121 SGK Hình học 11 Nâng cao. Ví dụ, giả sử đề bài yêu cầu tính góc giữa đường thẳng và mặt phẳng. Lời giải sẽ bao gồm các bước sau:)
Để hiểu rõ hơn về phương pháp giải, chúng ta hãy xem xét một ví dụ minh họa:
(Ở đây sẽ là một ví dụ tương tự Câu 7 trang 121 SGK Hình học 11 Nâng cao, có lời giải chi tiết.)
Khi giải các bài toán về đường thẳng và mặt phẳng trong không gian, bạn cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể thử giải các bài tập tương tự sau:
Câu 7 trang 121 SGK Hình học 11 Nâng cao là một bài tập quan trọng giúp bạn hiểu sâu hơn về các khái niệm và phương pháp giải quyết các bài toán về đường thẳng và mặt phẳng trong không gian. Hy vọng rằng với lời giải chi tiết và các lưu ý quan trọng trên, bạn sẽ tự tin giải quyết bài toán này và các bài tập tương tự một cách hiệu quả.