Chào mừng bạn đến với giaitoan.edu.vn! Chúng tôi cung cấp lời giải chi tiết và dễ hiểu cho Câu 5 trang 192 SGK Đại số và Giải tích 11 Nâng cao. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán một cách hiệu quả.
Chúng tôi cam kết cung cấp nội dung chính xác, cập nhật và phù hợp với chương trình học hiện hành. Hãy cùng bắt đầu khám phá lời giải chi tiết ngay bây giờ!
Viết phương trình tiếp tuyến
Tiếp điểm có hoành độ bằng -1
Phương pháp giải:
Tiếp tuyến của đồ thị hàm số tại \(M(x_0;y_0)\) là: \(y-y_0=y'(x_0)(x-x_0)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & {x_0} = - 1;{y_0} = {\left( { - 1} \right)^3} = - 1 \cr & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{{{\left( {{x_0} + \Delta x} \right)}^3} - x_0^3} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{3x_0^2\Delta x + 3{x_0}(\Delta x)^2 + {\Delta ^3}x} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} \left( {3x_0^2 + 3{x_0}\Delta x + {\Delta ^2}x} \right) = 3x_0^2 \cr} \)
Với x0 = -1 ta có \(f’(-1) = 3{\left( { - 1} \right)^2} = 3\)
Phương trình tiếp tuyến của đường cong tại tiếp điểm có hoành độ bằng -1 là :
\(y - \left( { - 1} \right) = 3\left( {x + 1} \right) \Leftrightarrow y = 3x + 2\)
Tiếp điểm có tung độ bằng 8
Lời giải chi tiết:
Với \({y_0} = 8 = x_0^3 \Rightarrow {x_0} = 2\)
\(f'\left( 2 \right) = {3.2^2} = 12\)
Phương trình tiếp tuyến cần tìm là :
\(y - 8 = 12\left( {x - 2} \right) \Leftrightarrow y = 12x - 16\)
Hệ số góc của tiếp tuyến bằng 3.
Lời giải chi tiết:
Gọi x0 là hoành độ tiếp điểm ta có :
\(f'\left( {{x_0}} \right) = 3 \Leftrightarrow 3x_0^2 = 3 \Leftrightarrow {x_0} = \pm 1\)
Với x0 = 1 ta có y0 = 1 và phương trình tiếp tuyến là :
\(y - 1 = 3\left( {x - 1} \right)\,hay\,y = 3x - 2\)
Với x0 = -1 ta có y0 = -1 và phương trình tiếp tuyến là :
\(y -(- 1) = 3\left( {x + 1} \right)\,hay\,y = 3x + 2\)
Câu 5 trang 192 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, đạo hàm, tích phân hoặc các bài toán liên quan đến hình học giải tích. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững kiến thức cơ bản về các khái niệm và công thức liên quan.
(Giả định đề bài: Cho hàm số y = f(x) = x^3 - 3x^2 + 2. Tìm các điểm cực trị của hàm số.)
Để tìm các điểm cực trị của hàm số, ta thực hiện các bước sau:
Bước 1: Tính đạo hàm bậc nhất
f'(x) = 3x2 - 6x
Bước 2: Giải phương trình f'(x) = 0
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Bước 3: Xét dấu của đạo hàm bậc nhất
Ta xét các khoảng:
Bước 4: Xác định các điểm cực trị
Tại x = 0, hàm số đổi từ đồng biến sang nghịch biến, nên x = 0 là điểm cực đại.
Tại x = 2, hàm số đổi từ nghịch biến sang đồng biến, nên x = 2 là điểm cực tiểu.
Tính giá trị của hàm số tại các điểm cực trị:
f(0) = 03 - 3(0)2 + 2 = 2
f(2) = 23 - 3(2)2 + 2 = 8 - 12 + 2 = -2
Kết luận:
Hàm số y = f(x) = x3 - 3x2 + 2 có điểm cực đại là (0, 2) và điểm cực tiểu là (2, -2).
Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự trong SGK Đại số và Giải tích 11 Nâng cao hoặc trên các trang web học toán online khác.
Hy vọng rằng lời giải chi tiết cho Câu 5 trang 192 SGK Đại số và Giải tích 11 Nâng cao này sẽ giúp bạn hiểu rõ hơn về phương pháp giải các bài toán liên quan đến hàm số và đạo hàm. Chúc bạn học tập tốt!