Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Danh sách lớp của Hường được đánh số từ 1 đến 30. Hường có số thứ tự là 12. Chọn ngẫu nhiên một bạn trong lớp.
Tính xác suất để Hường được chọn.
Lời giải chi tiết:
Chọn 1 bạn trong 30 bạn trong lớp, có \(\left| \Omega \right| = C_{30}^1 = 30\)
Gọi A là biến cố “Hường được chọn”, có duy nhất 1 cách chọn nên \(\left| {{\Omega _A}} \right| = 1\)
Ta có: \(P\left( A \right) =\dfrac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega \right|}}= {1 \over {30}}\)
Tính xác suất để Hường không được chọn.
Lời giải chi tiết:
Gọi B là biến cố “Hường không được chọn”.
Ta có:
\({\left| {{\Omega _B}} \right| = \left| \Omega \right| - \left| {{\Omega _A}} \right| = 30 - 1 = 29}\)
Xác suất \(P\left( B \right) = {{29} \over {30}}\)
Tính xác suất để một bạn có số thứ tự nhỏ hơn số thứ tự của Hường được chọn.
Lời giải chi tiết:
Gọi C là biến cố : “Bạn có số thứ tự nhỏ hơn 12 được chọn”.
Ta có: \({\Omega _C} = \left\{ {1;2;...;11} \right\} \Rightarrow \left| {{\Omega _C}} \right| = 11\)
Vậy \(P\left( C \right) = {{11} \over {30}}\)
Câu 27 trang 75 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các bài toán liên quan đến đạo hàm của hàm số, ứng dụng đạo hàm để khảo sát hàm số và giải các bài toán tối ưu. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Để cung cấp một lời giải chi tiết, chúng ta cần biết chính xác nội dung của câu 27. Tuy nhiên, dựa trên kinh nghiệm giảng dạy và phân tích các đề thi trước đây, chúng ta có thể đưa ra một ví dụ về dạng bài tập thường gặp và cách giải:
Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Ngoài dạng bài tập tìm cực trị, câu 27 trang 75 có thể xuất hiện các dạng bài tập khác như:
Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Câu 27 trang 75 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng đạo hàm. Bằng cách nắm vững các kiến thức cơ bản, áp dụng các mẹo giải bài tập và tham khảo các tài liệu tham khảo, bạn có thể tự tin giải quyết bài tập này một cách hiệu quả.