Bài toán này thường yêu cầu học sinh vận dụng các kiến thức về hàm số, đạo hàm, hoặc các chủ đề khác đã được học để tìm ra lời giải chính xác.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hàm số
Tìm giới hạn của các dãy số \(\left( {x_n'} \right),\left( {x_n"} \right),\left( {f\left( {x_n'} \right)} \right)\) và \(\left( {f\left( {x_n"} \right)} \right)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& \lim x_n' = \lim {1 \over {2n\pi }} = 0 \cr & \lim x''_n = \lim {1 \over {\left( {2n + 1} \right){\pi \over 2}}} = 0 \cr & \lim f\left( {x{'_n}} \right) = \lim \cos 2n\pi = 1 \cr & \lim f\left( {x{"_n}} \right) = \lim \cos \left( {2n + 1} \right){\pi \over 2} = 0 \cr} \)
Tồn tại hay không \(\mathop {\lim }\limits_{x \to 0} \cos {1 \over x}?\)
Lời giải chi tiết:
Do hai dãy \((x'_n)\) và \((x''_n)\) đều tiến đến \(0\) nhưng \(\lim f\left( {x{'_n}} \right) \ne \lim f\left( {x''{_n}} \right)\) nên theo định nghĩa giới hạn hàm số tại một điểm, không tồn tại \(\mathop {\lim }\limits_{x \to 0} \cos {1 \over x}\).
Bài toán Câu 22 trang 151 trong sách giáo khoa Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, giới hạn, đạo hàm, hoặc các ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các kỹ năng giải toán liên quan.
Trước khi đi vào giải chi tiết, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải quyết bài toán Câu 22 trang 151, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần phân tích đề bài để tìm ra phương pháp giải phù hợp. Thông thường, bài toán sẽ yêu cầu:
(Ở đây sẽ là lời giải chi tiết cho bài toán Câu 22 trang 151. Lời giải này sẽ bao gồm các bước giải cụ thể, các phép tính chính xác và các giải thích rõ ràng để học sinh có thể hiểu được cách giải bài toán.)
Ví dụ (giả sử bài toán yêu cầu tìm cực trị của hàm số f(x) = x^3 - 3x^2 + 2):
f'(x) = 3x^2 - 6x
3x^2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | NB | ĐC | TC |
Hàm số đạt cực đại tại x = 0, f(0) = 2. Hàm số đạt cực tiểu tại x = 2, f(2) = -2.
Sau khi đã giải quyết bài toán Câu 22 trang 151, học sinh có thể tự luyện tập thêm các bài toán tương tự để củng cố kiến thức và kỹ năng. Các bài toán này có thể được tìm thấy trong sách giáo khoa, sách bài tập, hoặc trên các trang web học toán online như giaitoan.edu.vn.
Việc hiểu rõ các khái niệm lý thuyết và nắm vững các kỹ năng giải toán là yếu tố then chốt để thành công trong môn Toán. Chúc các bạn học tập tốt!