Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Gieo hai đồng xu A và B một cách độc lập. Đồng xu A chế tạo cân đối. Đồng xu B chế tạo không cân đối nên xác suất xuất hiện mặt sấp gấp ba lần xác suất xuất hiện mặt ngửa. Tính xác suất để :
Khi gieo hai đồng xu một lần thì cả hai đồng xu đều ngửa ;
Lời giải chi tiết:
Gọi \(A_1\) là biến cố “Đồng xu A sấp”, \(A_2\) là biến cố “Đồng xu A ngửa”
Ta có: \(P({A_1}) = P({A_2}) = 0,5\)
\(B_1\) là biến cố “Đồng xu B sấp”, \(B_2\) là biến cố “Đồng xu B ngửa”.
Theo bài ra ta có:
\(\left\{ \begin{array}{l}P\left( {{B_1}} \right) = 3P\left( {{B_2}} \right)\\P\left( {{B_1}} \right) + P\left( {{B_2}} \right) = 1\end{array} \right.\)
Do đó \(P({B_1})= 0,75; P({B_2}) = 0,25\)
\({A_2}{B_2}\) là biến cố “Cả hai đồng xu A và B đều ngửa”. Theo quy tắc nhân xác suất, ta có:
\(P\left( {{A_2}{B_2}} \right) = 0,5.0,25 = 0,125 = {1 \over 8}\)
Khi gieo hai đồng xu hai lần thì hai lần cả hai đồng xu đều ngửa.
Lời giải chi tiết:
Gọi \(H_1\) là biến cố “Khi gieo hai đồng xu lần đầu thì cả hai đồng xu đều ngửa”
\(H_2\) là biến cố “Khi gieo hai đồng xu lần thứ hai thì cả hai đồng xu đều ngửa”.
Khi đó \({H_1}{H_2}\) là biến cố “Khi gieo hai đồng xu hai lần thì hai lần cả hai đồng xu đều ngửa”
Từ câu a ta có \(P\left( {{H_1}} \right) = P\left( {{H_2}} \right) = {1 \over 8}\)
Áp dụng quy tắc nhân xác suất, ta có : \(P\left( {{H_1}{H_2}} \right) = P\left( {{H_1}} \right)P\left( {{H_2}} \right) \)
\(= {1 \over 8}.{1 \over 8} = {1 \over {64}}\)
Câu 36 trang 83 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các bài toán liên quan đến đạo hàm của hàm số, ứng dụng đạo hàm để khảo sát hàm số, tìm cực trị, và giải các bài toán tối ưu hóa. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm định nghĩa, các quy tắc tính đạo hàm, và các ứng dụng của đạo hàm.
Trước khi đi vào giải chi tiết, chúng ta cùng ôn lại một số lý thuyết quan trọng:
Để giải quyết Câu 36 trang 83, bước đầu tiên là đọc kỹ đề bài, xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu chúng ta:
(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.)
Bước 1: Tính đạo hàm cấp một y'
y' = 3x2 - 6x
Bước 2: Tìm các điểm cực trịGiải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
Bước 3: Xác định loại cực trịTính đạo hàm cấp hai y''
y'' = 6x - 6
Tại x = 0: y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Giá trị cực đại là y(0) = 2.
Tại x = 2: y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y(2) = -2.
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự với các hàm số khác nhau. Hãy chú ý đến việc phân tích đề bài, vận dụng các quy tắc tính đạo hàm một cách chính xác, và kiểm tra lại kết quả.
Hàm số | Đạo hàm |
---|---|
y = c (hằng số) | y' = 0 |
y = xn | y' = nxn-1 |
y = sinx | y' = cosx |
y = cosx | y' = -sinx |
Hy vọng với lời giải chi tiết và những phân tích trên, bạn đã hiểu rõ cách giải Câu 36 trang 83 SGK Đại số và Giải tích 11 Nâng cao. Chúc bạn học tập tốt!