Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Một cấp số nhân có năm
Đề bài
Một cấp số nhân có năm số hạng mà hai số hạng đầu tiên là những số dương, tích của số hạng đầu và số hạng thứ ba bằng 1, tích của số hạng thứ ba và số hạng cuối bằng \({1 \over {16}}\) . Hãy tìm cấp số nhân đó.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của CSN: \[{u_{k + 1}}{u_{k - 1}} = u_k^2\]
Lời giải chi tiết
Với mỗi \(n \in \left\{ {1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5} \right\}\), kí hiệu un là số hạng thứ n của cấp số nhân đã cho.
Vì \({u_1} > 0,{u_2} > 0\) nên cấp số nhân (un) có công bội \(q = \frac{{{u_2}}}{{{u_1}}} > 0\).
Do đó \({u_n} > 0{\rm{ }}\;\forall {\rm{ }}n \in \left\{ {1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5} \right\}\).
Từ đó :
\(\eqalign{& 1 = {u_1}.{u_3} = u_2^2 \Rightarrow {u_2} = 1 \cr & {1 \over {16}} = {u_3}.{u_5} = u_4^2 \Rightarrow {u_4} = {1 \over 4} \cr & u_3^2 = {u_2}.{u_4} = {1 \over 4} \Rightarrow {u_3} = {1 \over 2} \cr} \)
Do đó \({u_1} = {1 \over {{u_3}}} = 2\,\text{ và }\,{u_5} = {1 \over {16}}:{u_3} = {1 \over 8}\)
Vậy cấp số nhân cần tìm là : \(2,1,{1 \over 2},{1 \over 4},{1 \over 8}\)
Câu 32 trang 121 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về đạo hàm của hàm số. Bài toán này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, đề bài sẽ cung cấp một hàm số và yêu cầu tính đạo hàm của hàm số đó tại một điểm cụ thể hoặc tìm điều kiện để hàm số có đạo hàm.
Giả sử đề bài yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.
Khi giải bài tập về đạo hàm, cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Hy vọng với lời giải chi tiết và các kiến thức bổ ích trên, bạn sẽ hiểu rõ hơn về Câu 32 trang 121 SGK Đại số và Giải tích 11 Nâng cao và tự tin giải quyết các bài tập tương tự.