Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
a. Chứng minh rằng
Chứng minh rằng \(\sin {\pi \over {12}} = {{\sqrt 3 - 1} \over {2\sqrt 2 }}\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& \sin {\pi \over {12}} = \sin \left( {{\pi \over 3} - {\pi \over 4}} \right) \cr & = \sin {\pi \over 3}\cos {\pi \over 4} - \sin {\pi \over 4}\cos {\pi \over 3} \cr & = {{\sqrt 3 } \over 2}.{{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2}.{1 \over 2} \cr & = {{\sqrt 6 - \sqrt 2 } \over 4} = {{\sqrt 2 \left( {\sqrt 3 - 1} \right)} \over 4} \cr & = {{\sqrt 3 - 1} \over {2\sqrt 2 }} \cr} \)
Giải các phương trình \(2\sin x – 2\cos x =1 - \sqrt 3 \) bằng cách biến đổi vế trái về dạng \(C\sin(x + α)\).
Lời giải chi tiết:
Ta có:
\(\eqalign{& 2\sin x - 2\cos x = 1 - \sqrt 3 \cr & \Leftrightarrow {1 \over {\sqrt 2 }}\sin x - {1 \over {\sqrt 2 }}\cos x = {{1 - \sqrt 3 } \over {2\sqrt 2 }} \cr & \Leftrightarrow \sin x.\cos {\pi \over 4} - \sin {\pi \over 4}\cos x = - \sin {\pi \over {12}} \cr & \Leftrightarrow \sin \left( {x - {\pi \over 4}} \right) = \sin \left( { - {\pi \over {12}}} \right) \cr & \Leftrightarrow \left[ {\matrix{{x - {\pi \over 4} = - {\pi \over {12}} + k2\pi } \cr {x - {\pi \over 4} = \pi + {\pi \over {12}} + k2\pi } \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = {\pi \over 6} + k2\pi } \cr {x = {{4\pi } \over 3} + k2\pi } \cr} } \right.\left( {k \in\mathbb Z} \right) \cr} \)
Giải phương trình \(2\sin x – 2\cos x =1 - \sqrt 3 \) bằng cách bình phương hai vế.
Lời giải chi tiết:
Chú ý rằng \(1 - \sqrt 3 < 0\), ta đặt điều kiện \(\sin x – \cos x < 0\) rồi bình phương hai vế của phương trình thì được :
\(\eqalign{& 4\left( {1 - \sin 2x} \right) = 4 - 2\sqrt 3 \cr & \Leftrightarrow \sin 2x = {{\sqrt 3 } \over 2} \Leftrightarrow \left[ {\matrix{{x = {\pi \over 6} + k\pi } \cr {x = {\pi \over 3} + k\pi } \cr}\,\,(k\in\mathbb Z) } \right. \cr} \)
Thử vào điều kiện \(\sin x – \cos x < 0\), ta thấy :
* Họ nghiệm \(x = {\pi \over 6} + k\pi \) thỏa mãn điều kiện \(\sin x – \cos x < 0\) khi và chỉ khi \(k\) chẵn, tức là \(x = {\pi \over 6} + 2m\pi \) với \(m \in\mathbb Z\).
* Họ nghiệm \(x = {\pi \over 3} + k\pi \) thỏa mãn điều kiện \(\sin x – \cos x < 0\) khi và chỉ khi \(k\) lẻ, tức là \(x = {\pi \over 3} + \left( {2m + 1} \right)\pi = {{4\pi } \over 3} + 2m\pi \) với \(m \in\mathbb Z\).
Ta có kết quả như đã nêu ở câu b.
Câu 48 trang 48 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến hàm số. Bài toán này thường yêu cầu học sinh xác định khoảng đơn điệu của hàm số, tìm cực trị, và vẽ đồ thị hàm số. Việc nắm vững các khái niệm và kỹ năng này là nền tảng quan trọng cho việc học tập các môn Toán ở các lớp trên.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Thông thường, đề bài sẽ cung cấp một hàm số cụ thể và yêu cầu chúng ta thực hiện một hoặc nhiều thao tác sau:
Để giải quyết bài toán này một cách hiệu quả, chúng ta cần áp dụng các phương pháp sau:
Giả sử hàm số được cho trong đề bài là: f(x) = x3 - 3x2 + 2
Bước 1: Tính đạo hàm
f'(x) = 3x2 - 6x
Bước 2: Tìm điểm cực trị
Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Bước 3: Xác định loại cực trị
Xét dấu của f'(x) trên các khoảng:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Bước 4: Tính giá trị cực trị
f(0) = 2 (cực đại)
f(2) = -2 (cực tiểu)
Bước 5: Xác định khoảng đơn điệu
Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞).
Hàm số nghịch biến trên khoảng (0, 2).
Khi giải các bài toán về hàm số, đạo hàm, cần chú ý các điểm sau:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Câu 48 trang 48 SGK Đại số và Giải tích 11 Nâng cao là một bài tập điển hình để rèn luyện kỹ năng về đạo hàm và ứng dụng vào việc khảo sát hàm số. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, bạn sẽ tự tin hơn khi đối mặt với các bài toán tương tự.