Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Cho một cấp số nhân (un), trong đó
Tính công bội của cấp số nhân đã cho.
Phương pháp giải:
Sử dụng công thức \({u_{n}} = {u_1}{q^{n-1}}\)
Lời giải chi tiết:
Cấp số nhân đã cho có số hạng đầu là u1,công bội q.
Ta có: u3 = u1.q2 ≠ 0 ⇒ u1 ≠ 0; q ≠ 0
Theo giả thiết ta có: 243 u8 = 32.u3 nên:
243.u1.q7 = 32.u1.q2
243.u1.q7 - 32.u1.q2 = 0
u1.q2. (243.q5 - 32) = 0
243.q5 - 32 = 0 ( vì u1 ≠ 0; q ≠ 0 )
\( \Leftrightarrow {q^5} = \frac{{32}}{{243}} = {\left( {\frac{2}{5}} \right)^5}\)\( \Leftrightarrow q = \frac{2}{5}\)
Cách khác:
Ta có: \({u_8} = {u_3}{q^5}\) với q là công bội của cấp số nhân.
Thay vào đẳng thức đã cho, ta được :
\(243{u_3}{q^5} = 32{u_3}\)
Vì u3≠ 0 nên : \({q^5} = {{32} \over {243}} = {\left( {{2 \over 3}} \right)^5}\) \( \Leftrightarrow q = {2 \over 3}\)
Biết rằng tổng của cấp số nhân đã cho bằng \({3^5},\) tính u1.
Phương pháp giải:
Công thức tổng cấp số nhân lùi vô hạn \(S = \dfrac{{{u_1}}}{{1 - q}}\)
Lời giải chi tiết:
Tổng của cấp số nhân lùi vô hạn đó là \(S = {{{u_1}} \over {1 - q}}.\)
Từ đó, ta có :
\({3^5} = {{{u_1}} \over {1 - {2 \over 3}}}\) \(\Leftrightarrow {3^5} = \frac{{{u_1}}}{{1/3}} \) \(\Leftrightarrow {u_1} = {3^5}.\frac{1}{3} = {3^4} = 81\)
Câu 57 trang 177 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là vô cùng quan trọng để giải quyết bài toán này một cách hiệu quả.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu. Thông thường, đề bài sẽ cho một hàm số cụ thể và yêu cầu:
Để giải quyết bài toán này, chúng ta sẽ sử dụng các phương pháp sau:
Giả sử hàm số được cho là: f(x) = x3 - 3x2 + 2
f'(x) = 3x2 - 6x
Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Xét dấu f'(x):
Hàm số f(x) = x3 - 3x2 + 2 có:
Khi giải các bài toán về khảo sát hàm số, cần chú ý:
Kiến thức về khảo sát hàm số có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như:
Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng này, bạn sẽ tự tin hơn khi giải quyết Câu 57 trang 177 SGK Đại số và Giải tích 11 Nâng cao và các bài toán tương tự.