Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Các số x + 6y, 5x + 2y, 8x + y
Đề bài
Các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng; đồng thời, các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất CSC: \[{u_{k + 1}} + {u_{k - 1}} = 2{u_k}\]
Tính chất CSN: \[{u_{k + 1}}.{u_{k - 1}} = u_k^2\]
- Lập hệ phương trình ẩn x, y.
- Giải hệ và kết luận.
Lời giải chi tiết
Vì các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng nên :
\(2\left( {5x + 2y} \right) = \left( {x + 6y} \right) + \left( {8x + y} \right)\)
\( \Leftrightarrow 10x + 4y = 9x + 7y\)
\(\Leftrightarrow x = 3y\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Vì các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân nên :
\({\left( {y + 2} \right)^2} = \left( {x - 1} \right)\left( {x - 3y} \right)\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Thế (1) vào (2), ta được:
\({\left( {y + 2} \right)^2} = \left( {3y - 1} \right)\left( {3y - 3} \right)\)
\( \Leftrightarrow {\left( {y + 2} \right)^2} = 0 \Leftrightarrow y = - 2.\)
Từ đó \(x = -6\).
Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Dưới đây là lời giải chi tiết và các kiến thức liên quan để bạn có thể hiểu rõ hơn về cách giải quyết bài toán này.
(Đề bài đầy đủ của Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao sẽ được trình bày tại đây. Ví dụ:)
Cho hàm số y = x3 - 3x2 + 2. Hãy tìm:
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là tập số thực, tức là D = ℝ.
Để tìm các điểm cực trị, ta thực hiện các bước sau:
Vậy hàm số đạt cực đại tại điểm (0; 2) và đạt cực tiểu tại điểm (2; -2).
Dựa vào dấu của đạo hàm bậc nhất, ta có thể xác định khoảng đồng biến và nghịch biến của hàm số:
Để vẽ đồ thị hàm số, ta cần xác định:
Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số y = x3 - 3x2 + 2.
Khi giải các bài tập về khảo sát hàm số bằng đạo hàm, bạn cần lưu ý:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong SGK và sách bài tập Đại số và Giải tích 11 Nâng cao.
Hy vọng lời giải chi tiết này sẽ giúp bạn hiểu rõ hơn về Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao. Chúc bạn học tốt!