Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Trong các dãy số dưới đây
Dãy số \(1, -2, 4, -8, 16, -32, 64\)
Lời giải chi tiết:
Dãy số đã cho là một cấp số nhân với công bội \(q = -2\).
Dãy số (un) với \({u_n} = n{.6^{n + 1}}\)
Lời giải chi tiết:
\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\left( {n + 1} \right){6^{n + 1}}}}{{n{{.6}^n}}} = \frac{{6\left( {n + 1} \right)}}{n}\) với mọi \(n ≥ 1\).
Do \(\frac{{6\left( {n + 1} \right)}}{n}\) không phải là hằng số nên (un) không phải là cấp số nhân.
Dãy số (vn) với \({v_n} = {\left( { - 1} \right)^n}{.3^{2n}}\)
Lời giải chi tiết:
\({{{v_{n + 1}}} \over {{v_n}}} = {{{{\left( { - 1} \right)}^{n + 1}}{{.3}^{2\left( {n + 1} \right)}}} \over {{{\left( { - 1} \right)}^n}{{.3}^{2n}}}} = \frac{{ - {{1.3}^{2n + 2}}}}{{{3^{2n}}}} = - 9\) với mọi \(n ≥ 1\).
Suy ra (vn) là một cấp số nhân với công bội \(q = -9\).
Dãy số (xn) với \({x_n} = {\left( { - 4} \right)^{2n + 1}}\) .
Lời giải chi tiết:
\({{{x_{n + 1}}} \over {{x_n}}} = {{{{\left( { - 4} \right)}^{2n + 3}}} \over {{{\left( { - 4} \right)}^{2n + 1}}}} = \frac{{{{\left( { - 4} \right)}^{2n + 1}}.{{\left( { - 4} \right)}^2}}}{{{{\left( { - 4} \right)}^{2n + 1}}}}= 16\) với mọi \(n ≥ 1\).
Suy ra (xn) là một cấp số nhân với công bội \(q = 16\).
Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là vô cùng quan trọng để giải quyết bài toán này một cách hiệu quả.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu. Thông thường, đề bài sẽ cho một hàm số cụ thể và yêu cầu:
Để giải quyết bài toán này, chúng ta sẽ áp dụng các bước sau:
Giả sử hàm số được cho là: y = x3 - 3x2 + 2
Bước 1: Tập xác định: D = R
Bước 2: Đạo hàm bậc nhất: y' = 3x2 - 6x
Bước 3: Tìm điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Xét dấu y':
Vậy hàm số có cực đại tại x = 0, ymax = 2 và cực tiểu tại x = 2, ymin = -2
Bước 4: Đạo hàm bậc hai: y'' = 6x - 6
Bước 5: Xác định khoảng lồi, lõm và điểm uốn: 6x - 6 = 0 => x = 1
Xét dấu y'':
Vậy hàm số có điểm uốn tại x = 1, y = 0
Khi giải bài toán này, cần lưu ý một số điểm sau:
Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng đạo hàm để khảo sát hàm số. Bằng cách nắm vững phương pháp giải và thực hành thường xuyên, bạn sẽ tự tin giải quyết các bài toán tương tự một cách hiệu quả.