Bài toán này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Tính đạo hàm của mỗi hàm số sau :
\(y = {1 \over {2x - 1}}\,\text{ với }\,x \ne {1 \over 2}\)
Phương pháp giải:
Sử dụng công thức \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}}\)
Lời giải chi tiết:
Đặt \(f(x)=y = {1 \over {2x - 1}}\)
Với \({x_0} \ne {1 \over 2}\) ta có:
\(\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{{1 \over {2{x_0} + 2\Delta x - 1}} - {1 \over {2{x_0} - 1}}} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 2\Delta x} \over {\Delta x\left( {2{x_0} + 2\Delta x - 1} \right)\left( {2{x_0} - 1} \right)}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 2} \over {\left( {2{x_0} + 2\Delta x - 1} \right)\left( {2{x_0} - 1} \right)}} \cr & = {{ - 2} \over {{{\left( {2{x_0} - 1} \right)}^2}}} \cr} \)
\(y = \sqrt {3 - x} \) với \(x < 3\).
Lời giải chi tiết:
Đặt \(f(x)=y = \sqrt {3 - x} \)
Với x0 < 3, ta có:
\(\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{\sqrt {3 - {x_0} - \Delta x} - \sqrt {3 - {x_0}} } \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{3 - {x_0} - \Delta x - 3 + {x_0}}}{{\Delta x\left( {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} } \right)}} \cr &= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{ - \Delta x}}{{\Delta x\left( {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} } \right)}}\cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 1} \over {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} }} \cr &= {{ - 1} \over {2\sqrt {3 - {x_0}} }} \cr} \)
Câu 9 trang 192 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Dưới đây là lời giải chi tiết và các kiến thức liên quan để bạn có thể hiểu rõ hơn về bài toán này.
Thông thường, Câu 9 trang 192 sẽ đưa ra một hàm số cụ thể và yêu cầu:
Để giải quyết bài toán này, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cho là: f(x) = x3 - 3x2 + 2
Bước 1: Tập xác định: D = R
Bước 2: Đạo hàm cấp nhất: f'(x) = 3x2 - 6x
Bước 3: Tìm điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Bước 4: Xác định khoảng đồng biến, nghịch biến:
Bước 5: Đạo hàm cấp hai: f''(x) = 6x - 6
Bước 6: Vẽ đồ thị: Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số.
Để nắm vững kiến thức về đạo hàm và khảo sát hàm số, bạn có thể tham khảo các tài liệu sau:
Câu 9 trang 192 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng vận dụng đạo hàm để khảo sát hàm số. Hy vọng với lời giải chi tiết và các kiến thức liên quan được cung cấp trên đây, bạn sẽ tự tin hơn khi giải quyết bài toán này và các bài toán tương tự.