Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Tìm các giới hạn sau :
\(\mathop {\lim }\limits_{x \to - 2} \root 3 \of {{{2{x^4} + 3x + 1} \over {{x^2} - x + 2}}} \)
Phương pháp giải:
Thay x vào hàm số suy ra giới hạn.
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to - 2} \root 3 \of {{{2{x^4} + 3x + 1} \over {{x^2} - x + 2}}} \) \(= \root 3 \of {{{32 - 6 + 1} \over {4 + 2 + 2}}} = \root 3 \of {{{27} \over 8}} = {3 \over 2}\)
\(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} - x + 5} } \over {2x - 1}}\)
Phương pháp giải:
Đưa thừa số ra ngoài dấu căn và chia cả tử và mẫu cho lũy thừa bậc cao nhất của x.
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} - x + 5} } \over {2x - 1}} \cr & = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2}\left( {1 - \frac{1}{x} + \frac{5}{{{x^2}}}} \right)} }}{{2x - 1}}\cr &= \mathop {\lim }\limits_{x \to - \infty } {{\left| x \right|\sqrt {1 - {1 \over x} + {5 \over {{x^2}}}} } \over {x\left( {2 - {1 \over x}} \right)}} \cr & = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 - \frac{1}{x} + \frac{5}{{{x^2}}}} }}{{x\left( {2 - \frac{1}{x}} \right)}}\cr &= \mathop {\lim }\limits_{x \to - \infty } {{ - \sqrt {1 - {1 \over x} + {5 \over {{x^2}}}} } \over {2 - {1 \over x}}} = - {1 \over 2} \cr} \)
\(\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{{x^4} + 1} \over {{x^2} + 4x + 3}}\)
Lời giải chi tiết:
Với mọi x < -3, ta có: \({{{x^4} + 1} \over {{x^2} + 4x + 3}} = {{{x^4} + 1} \over {x + 1}}.{1 \over {x + 3}}\)
\(\eqalign{& \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{{x^4} + 1} \over {x + 1}} = {{82} \over { - 2}} = - 41 < 0\cr&\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {1 \over {x + 3}} = - \infty \cr &\text { vì } \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \left( {x + 3} \right) = 0,x + 3 < 0,\forall x < - 3 \cr & \text{Vậy }\,\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{{x^4} + 1} \over {{x^2} + 4x + 3}} = + \infty \cr} \)
\(\mathop {\lim }\limits_{x \to 2} {3 \over {{{\left( {x - 2} \right)}^2}}}\sqrt {{{x + 4} \over {4 - x}}} \)
Lời giải chi tiết:
\(\eqalign{& \text{ Vì }\,\mathop {\lim }\limits_{x \to 2} {3 \over {{{\left( {x - 2} \right)}^2}}} = + \infty \cr&\text{ và}\,\mathop {\lim }\limits_{x \to 2} \sqrt {{{x + 4} \over {4 - x}}} = \sqrt {{6 \over 2}} = \sqrt 3 > 0 \cr & \text{ nên }\,\mathop {\lim }\limits_{x \to 2} {3 \over {{{\left( {x - 2} \right)}^2}}}\sqrt {{{x + 4} \over {4 - x}}} = + \infty \cr} \)
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{\sqrt {8 + 2x} - 2} \over {\sqrt {x + 2} }}\)
Phương pháp giải:
Nhân tử và mẫu của phân thức với \(\sqrt {8 + 2x} + 2\).
Lời giải chi tiết:
Nhân tử và mẫu của phân thức với \(\sqrt {8 + 2x} + 2,\) ta được :
\(\eqalign{& {{\sqrt {8 + 2x} - 2} \over {\sqrt {x + 2} }}\cr & = \frac{{\left( {\sqrt {8 + 2x} - 2} \right)\left( {\sqrt {8 + 2x} + 2} \right)}}{{\sqrt {x + 2} \left( {\sqrt {8 + 2x} + 2} \right)}}\cr &= {{8 + 2x - 4} \over {\sqrt {x + 2} \left( {\sqrt {8 + 2x} + 2} \right)}} \cr & = {{2\left( {x + 2} \right)} \over {\sqrt {x + 2} \left( {\sqrt {8 + 2x} + 2} \right)}} \cr &= {{2\sqrt {x + 2} } \over {\sqrt {8 + 2x} + 2}} \cr & \forall x > - 2 \cr} \)
Do đó \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{\sqrt {8 + 2x} - 2} \over {\sqrt {x + 2} }} \) \(= \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{2\sqrt {x + 2} } \over {\sqrt {8 + 2x }+ 2 }} = {0 \over 4} = 0\)
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + x} - \sqrt {4 + {x^2}} } \right)\)
Phương pháp giải:
Nhân chia liên hợp.
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + x} - \sqrt {4 + {x^2}} } \right) \cr& = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left( {\sqrt {{x^2} + x} - \sqrt {4 + {x^2}} } \right)\left( {\sqrt {{x^2} + x} + \sqrt {4 + {x^2}} } \right)}}{{\sqrt {{x^2} + x} + \sqrt {4 + {x^2}} }}\cr &= \mathop {\lim }\limits_{x \to - \infty } {{{x^2} + x - 4 - {x^2}} \over {\sqrt {{x^2} + x} + \sqrt {4 + {x^2}} }} \cr & = \mathop {\lim }\limits_{x \to - \infty } {{x - 4} \over {\left| x \right|\sqrt {1 + {1 \over x}} + \left| x \right|\sqrt {{4 \over {{x^2}}} + 1} }} \cr&= \mathop {\lim }\limits_{x \to - \infty } {{x\left( {1 - {4 \over x}} \right)} \over { - x\left( {\sqrt {1 + {1 \over x}} + \sqrt {{4 \over {{x^2}}} + 1} } \right)}} \cr & = - \mathop {\lim }\limits_{x \to - \infty } {{1 - {4 \over x}} \over {\sqrt {1 + {1 \over x}} + \sqrt {1 + {4 \over {{x^2}}}} }} \cr &= - {1 \over 2} \cr} \)
Câu 59 trang 178 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về đạo hàm của hàm số. Bài toán này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán liên quan đến hàm số.
Thông thường, câu 59 trang 178 sẽ đưa ra một hàm số cụ thể và yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:
Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các phương pháp sau:
Giả sử bài toán yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Ngoài câu 59 trang 178, học sinh cũng có thể gặp các bài tập tương tự với các hàm số khác nhau hoặc yêu cầu khác nhau. Một số dạng bài tập liên quan bao gồm:
Khi giải các bài toán về đạo hàm, học sinh cần lưu ý một số điểm sau:
Để học tốt môn Đại số và Giải tích 11 Nâng cao, học sinh có thể tham khảo các tài liệu sau:
Câu 59 trang 178 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các phương pháp giải và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn học.
Quy tắc | Công thức |
---|---|
Đạo hàm của tổng | (u + v)' = u' + v' |
Đạo hàm của tích | (uv)' = u'v + uv' |
Đạo hàm của thương | (u/v)' = (u'v - uv') / v2 |