Bài toán này thường yêu cầu học sinh vận dụng kiến thức về vectơ, đường thẳng và mặt phẳng để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.
Đề bài
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc và AB = a, BC = b, CD = c.
a. Tính độ dài AD.
b. Chỉ ra điểm cách đều A, B, C, D
c. Tính góc giữa đường thẳng AD và mặt phẳng (BCD), góc giữa đường thẳng AD và mặt phẳng (ABC).
Phương pháp giải - Xem chi tiết
- Chứng minh \(\widehat {ABD} = \widehat {ACD} = {90^0}\).
a) Tính độ dài bằng cách sử dụng định lý Py-ta-go.
b) Xác định điểm cách đều bằng tính chất tam giác vuông.
c) Góc giữa đường thẳng và mặt phẳng (khác \({90^0}\)) là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
Lời giải chi tiết
a. Ta có: CD ⊥ BC và CD ⊥ AB nên CD ⊥ (ABC)
mà AC ⊂ (ABC) do đó CD ⊥ AC.
Trong tam giác vuông ABC ta có:
\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2}\)
Trong tam giác vuông ACD ta có:
\(A{D^2} = A{C^2} + C{D^2} = {a^2} + {b^2} + {c^2}\)
Suy ra: \(AD = \sqrt {{a^2} + {b^2} + {c^2}} \)
b. Ta có: \(AB \bot BC\) và \(AB \bot CD\) suy ra AB ⊥ (BCD) do đó AB ⊥ BD.
Gọi I là trung điểm AD ta có:
+) Tam giác ACD vuông tại C có CI là đường trung tuyến ứng với cạnh huyền AD nên: \(IA = IC = ID = \frac{{AD}}{2}\left( 1 \right)\)
+) Tam giác ABD vuông tại B có BI là đường trung tuyến ứng với cạnh huyền AD nên: \[IA = IB = ID = \frac{{AD}}{2}\left( 2 \right)\]
Từ (1) và (2) suy ra: IA = IB = IC = ID
Vây I cách đều A, B, C, D.
c. Ta có: \(AB \bot \left( {BCD} \right)\) \( \Rightarrow BD\) là hình chiếu của \(AD\) trên \(\left( {BCD} \right)\).
Khi đó góc \(\widehat {\left( {AD,\left( {BCD} \right)} \right)} = \widehat {\left( {AD,BD} \right)} = \widehat {ADB}\).
Xét tam giác \(ABD\) vuông tại \(B\) thì \(\sin \widehat {ADB} = \dfrac{{AB}}{{AD}} = \dfrac{a}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\) \( \Rightarrow \widehat {\left( {AD,\left( {BCD} \right)} \right)} = \arcsin \dfrac{a}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)
Lại có \(DC \bot \left( {ABC} \right)\) \( \Rightarrow AC\) là hình chiếu của \(AD\) trên \(\left( {ABC} \right)\).
Khi đó góc \(\widehat {\left( {AD,\left( {ABC} \right)} \right)} = \widehat {\left( {AD,AC} \right)} = \widehat {DAC}\)
Xét tam giác \(ACD\) vuông tại \(C\) thì \(\sin \widehat {DAC} = \dfrac{{CD}}{{AD}} = \dfrac{c}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\) \( \Rightarrow \widehat {\left( {AD,\left( {ABC} \right)} \right)} = \arcsin \dfrac{c}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)
Bài toán Câu 16 trang 103 SGK Hình học 11 Nâng cao thường thuộc chủ đề về đường thẳng và mặt phẳng trong không gian, đặc biệt liên quan đến việc xác định mối quan hệ giữa chúng. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, phương trình đường thẳng, phương trình mặt phẳng và các điều kiện đồng phẳng của ba vectơ.
Trước khi đi vào giải chi tiết, chúng ta cùng ôn lại một số kiến thức quan trọng:
Thông thường, bài toán Câu 16 trang 103 sẽ đưa ra một hệ tọa độ Oxyz và một số điểm, đường thẳng, mặt phẳng. Yêu cầu của bài toán có thể là:
Giả sử bài toán yêu cầu chứng minh bốn điểm A, B, C, D đồng phẳng. Ta có thể làm như sau:
Ví dụ: Cho A(1; 2; 3), B(2; 3; 4), C(3; 4; 5), D(4; 5; 6). Chứng minh A, B, C, D đồng phẳng.
AB = (1; 1; 1), AC = (2; 2; 2), AD = (3; 3; 3)
[AB, AC, AD] = 0 (vì AC = 2AB và AD = 3AB)
Vậy A, B, C, D đồng phẳng.
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài toán tương tự trong SGK và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp nhiều bài tập và lời giải chi tiết để bạn tham khảo.
Hy vọng với lời giải chi tiết và những phân tích trên, bạn đã hiểu rõ hơn về cách giải Câu 16 trang 103 SGK Hình học 11 Nâng cao. Chúc bạn học tốt!