Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Cho dãy số (un) xác định bởi :
Đề bài
Cho dãy số (un) xác định bởi :
\({u_1} = 3\;\text{và}\;{u_{n + 1}} = \sqrt {{u_n} + 6} \) với mọi n ≥ 1
Chứng minh rằng (un) vừa là cấp số cộng, vừa là cấp số nhân.
Phương pháp giải - Xem chi tiết
Tính toán một vài số hạng đầu và dự đoán dãy số đã cho là dãy không đổi.
Chứng minh bằng quy nạp dự đoán và suy ra dãy không đổi vừa là CSC vừa là CSN.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}{u_1} = 3\\{u_2} = \sqrt {{u_1} + 6} = \sqrt {3 + 6} = 3\\{u_3} = \sqrt {{u_2} + 6} = \sqrt {3 + 6} = 3\\...\end{array}\)
Dự đoán \({u_n} = {\rm{ }}3{\rm{ }}\;\left( 1 \right)\) với mọi n.
Ta chứng minh bằng qui nạp như sau:
+) Với \(n = 1\) ta có \({u_1} = {\rm{ }}3\), (1) đúng
+) Giả sử (1) đúng với \(n=k\) tức là: \({u_k} = {\rm{ }}3\)
+) Ta chứng minh \({u_{k{\rm{ }} + {\rm{ }}1}} = {\rm{ }}3\)
Thật vậy ta có \({u_{k + 1}} = \sqrt {{u_k} + 6} = \sqrt {3 + 6} = 3\)
Vậy \({u_n} = {\rm{ }}3, ∀n ≥ 1\) do đó (un) vừa là cấp số cộng công sai \(d = 0\) vừa là cấp số nhân công bội \(q = 1\).
Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ I, lớp 11. Bài toán này thường liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị, hoặc giải phương trình, bất phương trình chứa giá trị tuyệt đối. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, các quy tắc tính đạo hàm, và các phương pháp xét tính đơn điệu của hàm số.
Trước khi bắt đầu giải, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu chúng ta tìm một giá trị cụ thể, chứng minh một đẳng thức, hoặc giải một phương trình, bất phương trình. Việc phân tích đề bài một cách cẩn thận sẽ giúp chúng ta lựa chọn phương pháp giải phù hợp và tránh những sai sót không đáng có.
Có nhiều phương pháp khác nhau để giải Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao, tùy thuộc vào dạng bài cụ thể. Một số phương pháp thường được sử dụng bao gồm:
(Nội dung lời giải chi tiết cho Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao sẽ được trình bày tại đây. Lời giải cần đầy đủ các bước, giải thích rõ ràng, và sử dụng các ký hiệu toán học chính xác.)
Để giúp bạn hiểu rõ hơn về phương pháp giải, chúng ta sẽ xem xét một ví dụ minh họa:
(Ví dụ minh họa sẽ được trình bày tại đây, bao gồm đề bài, lời giải, và giải thích chi tiết.)
Khi giải Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao, bạn cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải toán, bạn có thể làm thêm một số bài tập tương tự:
Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng, giúp bạn rèn luyện kỹ năng giải toán và củng cố kiến thức về hàm số, đạo hàm. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa trên, bạn đã hiểu rõ hơn về cách giải bài toán này. Chúc bạn học tập tốt!
STT | Khái niệm | Giải thích |
---|---|---|
1 | Đạo hàm | Tốc độ thay đổi tức thời của hàm số tại một điểm. |
2 | Tính đơn điệu của hàm số | Hàm số tăng hoặc giảm trên một khoảng xác định. |
3 | Cực trị của hàm số | Điểm mà hàm số đạt giá trị lớn nhất hoặc nhỏ nhất trong một khoảng xác định. |