Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi đồ thị để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một chiếc guồng nước có dạng hình tròn bán kính 2,5m ; trục của nó đặt cách mặt nước 2m
Khi nào thì chiếc gầu ở vị trí thấp nhất ?
Lời giải chi tiết:
Ta có: \(\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] \ge - 1\) \( \Rightarrow y \ge 2 + 2,5.\left( { - 1} \right) = - 0,5\)
Chiếc gầu ở vị trí thấp nhất khi \(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = - 1.\) Ta có :
\(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = - 1 \)
\(\Leftrightarrow 2\pi \left( {x - {1 \over 4}} \right) = - {\pi \over 2} + k2\pi \)
\( \Leftrightarrow x - \frac{1}{4} = - \frac{1}{4} + k\)
\(\Leftrightarrow x = k\,\left( {\,k \in\mathbb Z} \right)\)
Điều đó chứng tỏ rằng chiếc gầu ở vị trí thấp nhất tại các thời điểm 0 phút ; 1 phút ; 2 phút ; 3 phút…
Khi nào thì chiếc gầu ở vị trí cao nhất ?
Lời giải chi tiết:
Ta có: \(\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] \le 1\) \( \Rightarrow y \le 2 + 2,5.1 = 4,5\)
Chiếc gầu ở vị trí cao nhất khi \(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = 1.\) Ta có :
\(\sin \left[ {2\pi \left( {x - {1 \over 4}} \right)} \right] = 1\)
\(\Leftrightarrow 2\pi \left( {x - {1 \over 4}} \right) = {\pi \over 2} + k2\pi\)
\( \Leftrightarrow x - \frac{1}{4} = \frac{1}{4} + k\)
\(\Leftrightarrow x = {1 \over 2} + k\,\left( {\,k \in N} \right)\)
Điều đó chứng tỏ chiếc gàu ở vị trí cao nhất tại các thời điểm 0,5 phút; 1,5 phút ; 2,5 phút ; 3,5 phút …
Chiếc gầu cách mặt nước \(2m\) lần đầu tiên khi nào ?
Lời giải chi tiết:
Chiếc gàu cách mặt nước 2 mét khi:
\(\begin{array}{l}2 + 2,5\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] = 2\\ \Leftrightarrow 2,5\sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] = 0\\ \Leftrightarrow \sin \left[ {2\pi \left( {x - \frac{1}{4}} \right)} \right] = 0\\ \Leftrightarrow 2\pi \left( {x - \frac{1}{4}} \right) = k\pi \\ \Leftrightarrow x - \frac{1}{4} = \frac{k}{2}\\ \Leftrightarrow x = \frac{k}{2} + \frac{1}{4}\end{array}\)
Nghĩa là tại các thời điểm \(x = {1 \over 4} + {1 \over 2}k\) (phút) thì chiếc gầu cách mặt nước 2m;
Do đó lần đầu tiên nó cách mặt nước 2 mét khi quay được \({1 \over 4}\) phút (ứng với \(k = 0\)).
Câu 25 trang 32 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, đề bài sẽ cung cấp một hàm số bậc hai cụ thể và yêu cầu:
Giả sử đề bài yêu cầu giải hàm số y = x2 - 4x + 3. Chúng ta sẽ tiến hành giải như sau:
Khi giải các bài tập về hàm số bậc hai, bạn cần lưu ý một số điểm sau:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Câu 25 trang 32 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc hai và ứng dụng của nó. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả.