Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Tìm các giới hạn sau :
\(\mathop {\lim }\limits_{x \to {2^ + }} {{2x + 1} \over {x - 2}}\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to {2^ + }} {{2x + 1} \over {x - 2}} = + \infty \cr & \text{vì }\,\mathop {\lim }\limits_{x \to {2^ + }} \left( {2x + 1} \right) = 5,\cr &\mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} \right) = 0\,\text{ và }\,x - 2 > 0,\forall x > 2 \cr} \)
\(\mathop {\lim }\limits_{x \to {2^ - }} {{2x + 1} \over {x - 2}}\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to {2^ - }} {{2x + 1} \over {x - 2}} = - \infty \cr & \text{vì }\,\mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + 1} \right) = 5,\cr &\mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 2} \right) = 0\,\text{ và }\,x - 2 < 0,\forall x < 2 \cr} \)
\(\mathop {\lim }\limits_{x \to 0} \left( {{1 \over x} - {1 \over {{x^2}}}} \right)\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to 0} \left( {{1 \over x} - {1 \over {{x^2}}}} \right) = \mathop {\lim }\limits_{x \to 0} {{x - 1} \over {{x^2}}} = - \infty \cr & \text{vì }\,\mathop {\lim }\limits_{x \to 0} \left( {x - 1} \right) = - 1 < 0\cr &\text{ và }\,\mathop {\lim }\limits_{x \to 0} {x^2} = 0,{x^2} > 0\;\forall x \ne 0. \cr} \)
\(\mathop {\lim }\limits_{x \to {2^ - }} \left( {{1 \over {x - 2}} - {1 \over {{x^2} - 4}}} \right)\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to {2^ - }} \left( {{1 \over {x - 2}} - {1 \over {{x^2} - 4}}} \right) \cr &= \mathop {\lim }\limits_{x \to {2^ - }} {{x + 2 - 1} \over {{x^2} - 4}} = \mathop {\lim }\limits_{x \to {2^ - }} {{x + 1} \over {{x^2} - 4}} \cr &= - \infty \cr & \text{vì }\,\mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right) = 3,\cr &\mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 4} \right) = 0\,\text{ và }\,{x^2} - 4 < 0\cr &\text{ với }\, - 2 < x < 2 \cr} \)
Câu 35 trang 163 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là vô cùng quan trọng để giải quyết bài toán này một cách hiệu quả.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu. Thông thường, đề bài sẽ cung cấp một hàm số cụ thể và yêu cầu:
Để giải quyết bài toán này, chúng ta sẽ áp dụng các bước sau:
Giả sử hàm số được cho là: f(x) = x3 - 3x2 + 2
Bước 1: Tập xác định. Hàm số f(x) xác định trên R.
Bước 2: Đạo hàm.
f'(x) = 3x2 - 6x
f''(x) = 6x - 6
Bước 3: Điểm cực trị.
Giải f'(x) = 0, ta được: 3x2 - 6x = 0 => x = 0 hoặc x = 2
f''(0) = -6 < 0 => x = 0 là điểm cực đại.
f''(2) = 6 > 0 => x = 2 là điểm cực tiểu.
Bước 4: Khoảng đồng biến, nghịch biến.
f'(x) > 0 khi x < 0 hoặc x > 2 => Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞).
f'(x) < 0 khi 0 < x < 2 => Hàm số nghịch biến trên khoảng (0, 2).
Bước 5: Vẽ đồ thị. Dựa vào các thông tin trên, ta có thể vẽ được đồ thị hàm số.
Khi giải các bài toán về khảo sát hàm số, cần chú ý:
Kiến thức về khảo sát hàm số có ứng dụng rộng rãi trong nhiều lĩnh vực, như:
Câu 35 trang 163 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng đạo hàm để khảo sát hàm số. Việc nắm vững phương pháp giải và các lưu ý quan trọng sẽ giúp bạn tự tin giải quyết các bài toán tương tự.