Bài toán này thường yêu cầu học sinh vận dụng các kiến thức về hàm số, đạo hàm, hoặc các chủ đề khác đã được học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Gieo ba con súc sắc cân đối một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện của ba con súc sắc bằng 9.
Đề bài
Gieo ba con súc sắc cân đối một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện của ba con súc sắc bằng 9.
Lời giải chi tiết
Giả sử T là phép thử “Gieo ba con súc sắc”.
Kết quả của T là bộ ba số \((x, y, z)\), trong đó \(x, y, z\) tương ứng là kết quả của việc gieo con súc sắc thứ nhất, thứ hai, thứ ba.
Không gian mẫu T có \(6.6.6 = 216\) phần tử.
Gọi A là biến cố “Tổng số chấm trên mặt xuất hiện của ba con súc sắc là 9”.
Ta có tập hợp các kết quả thuận lợi cho A là :
ΩA = {(x;y;z)|x + y + z = 9,x, y, z ∈ N*, 1 ≤x,y,z ≤ 6}
Nhận xét:
9 = 1 + 2 + 6 = 1 + 3 + 5 = 2 + 3 + 4
= 1 + 4 + 4 = 2 + 2 + 5 = 3 + 3 + 3
Tập {1,2,6} cho ta 6 phần tử của ΩA là (1,2,6); (1,6,2); (2,1,6); (2,6,1); (6,1,2); (6,2,1).
Tương tự tập {1,3,5},{2,3,4} mỗi tập cho ta 6 phần tử của ΩA .
Tập {1,4,4} cho ta 3 kết quả của ΩA là: (1,4,4);(4,1,4);(4,4,1)
Tương tự tập {2,2,5} cho ta 3 phần tử của ΩA
Tập {3,3,3} cho ta 1 phần tử của ΩA
Vậy |ΩA| = 6 + 6 + 6 + 3 + 3 + 1 = 25
Suy ra \(P\left( A \right) = {{25} \over {216}}\)
Bài 42 trang 85 SGK Đại số và Giải tích 11 Nâng cao thường thuộc chương trình học về đạo hàm của hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
(Nội dung đề bài cụ thể sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm đạo hàm f'(x) và xác định các điểm cực trị của hàm số.)
Để giải bài toán này, chúng ta sẽ thực hiện các bước sau:
(Lời giải chi tiết của bài toán sẽ được trình bày ở đây, bao gồm các bước tính toán, giải thích rõ ràng, và kết luận.)
Để giúp bạn hiểu rõ hơn về phương pháp giải, chúng ta sẽ xem xét một ví dụ minh họa:
(Ví dụ minh họa với một bài toán tương tự, có lời giải chi tiết.)
Ngoài việc giải bài toán cụ thể này, bạn có thể tìm hiểu thêm về các ứng dụng khác của đạo hàm, chẳng hạn như:
Để rèn luyện kỹ năng giải toán, bạn có thể thử giải các bài tập tương tự sau:
Câu 42 trang 85 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Bằng cách nắm vững phương pháp giải và thực hành giải nhiều bài tập tương tự, bạn sẽ tự tin hơn trong việc giải quyết các bài toán toán học phức tạp.
Hy vọng rằng lời giải chi tiết và các kiến thức bổ sung trong bài viết này sẽ giúp bạn hiểu rõ hơn về bài toán và đạt kết quả tốt trong học tập.