Bài toán này thường yêu cầu học sinh vận dụng các kiến thức về hàm số, đạo hàm, hoặc các chủ đề khác đã được học để tìm ra lời giải chính xác.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm các giới hạn sau :
\(\mathop {\lim }\limits_{x \to - \infty } {{3{x^2} - x + 7} \over {2{x^3} - 1}}\)
Phương pháp giải:
Chia cả tử và mẫu của phân thức cho lũy thừa bậc cao nhất của \(x\).
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to - \infty } {{3{x^2} - x + 7} \over {2{x^3} - 1}}\cr & = \mathop {\lim }\limits_{x \to - \infty } {{{x^3}\left( {{3 \over x} - {1 \over {{x^2}}} + {7 \over {{x^3}}}} \right)} \over {{x^3}\left( {2 - {1 \over {{x^3}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to - \infty } {{{3 \over x} - {1 \over {{x^2}}} + {7 \over {{x^3}}}} \over {2 - {1 \over {{x^3}}}}}\cr & = \frac{{0 - 0 + 0}}{{2 - 0}} = {0 \over 2} = 0 \cr} \)
\(\mathop {\lim }\limits_{x \to - \infty } {{2{x^4} + 7{x^3} - 15} \over {{x^4} + 1}}\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to - \infty } {{2{x^4} + 7{x^3} - 15} \over {{x^4} + 1}} \cr &= \mathop {\lim }\limits_{x \to - \infty } {{{x^4}\left( {2 + {7 \over x} - {{15} \over {{x^4}}}} \right)} \over {{x^4}\left( {1 + {1 \over {{x^4}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to - \infty } {{2 + {7 \over x} - {{15} \over {{x^4}}}} \over {1 + {1 \over {{x^4}}}}} \cr &= \frac{{2 + 0 - 0}}{{1 + 0}}= 2 \cr} \)
\(\mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}}\)
Lời giải chi tiết:
\(\eqalign{& \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}} \cr &= \mathop {\lim }\limits_{x \to + \infty } {{{x^3}\sqrt {1 + {2 \over {{x^6}}}} } \over {{x^3}\left( {3 - {1 \over {{x^3}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to + \infty } {{\sqrt {1 + {2 \over {{x^6}}}} } \over {3 - {1 \over {{x^3}}}}} \cr & = \frac{{\sqrt {1 + 0} }}{{3 - 0}}= {1 \over 3} \cr} \)
\(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}}\)
Phương pháp giải:
Đưa \(x^6\) ra ngoài dấu căn, chú ý \(x \to - \infty \Rightarrow x < 0\).
Chú ý:
\(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,neu\,\,x \ge 0\\ - x\,neu\,\,x < 0\end{array} \right.\)
Lời giải chi tiết:
Với mọi \(x < 0\), ta có:
\({{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}} \)\(= {{\left| x^3 \right|\sqrt {1 + {2 \over {{x^6}}}} } \over {3{x^3} - 1}} \) \(= {{ - {x^3}\sqrt {1 + {2 \over {{x^6}}}} } \over {3{x^3} - 1}} \) \(= {{ - \sqrt {1 + {2 \over {{x^6}}}} } \over {3 - {1 \over {{x^3}}}}}\)
Do đó :
\(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^6} + 2} } \over {3{x^3} - 1}} = \mathop {\lim }\limits_{x \to - \infty } {{ - \sqrt {1 + {2 \over {{x^6}}}} } \over {3 - {1 \over {{x^3}}}}} = - {1 \over 3}\)
Bài toán Câu 24 trang 152 trong sách giáo khoa Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, giới hạn, đạo hàm, hoặc các ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các kỹ năng giải toán liên quan.
Trước khi đi vào giải chi tiết, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải quyết bài toán này, bước đầu tiên là đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu chúng ta:
(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số.)
Ngoài bài toán Câu 24 trang 152, còn rất nhiều bài tập tương tự yêu cầu học sinh vận dụng các kiến thức về hàm số, đạo hàm để giải quyết. Một số dạng bài tập thường gặp bao gồm:
Để học tốt môn Đại số và Giải tích 11 Nâng cao, bạn có thể tham khảo một số mẹo sau:
Câu 24 trang 152 SGK Đại số và Giải tích 11 Nâng cao là một bài toán điển hình để rèn luyện kỹ năng giải toán về hàm số và đạo hàm. Hy vọng với lời giải chi tiết và các kiến thức bổ trợ trên, bạn đã hiểu rõ cách giải quyết bài toán này và có thể tự tin giải các bài tập tương tự.