Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mp(P). Gọi M là điểm nằm giữa S và A ; N là điểm giữa S và B; giao điểm của hai đường thẳng AC và BD là O
Đề bài
Cho hình bình hành ABCD nằm trong mặt phẳng (P) và một điểm S nằm ngoài mp(P). Gọi M là điểm nằm giữa S và A ; N là điểm giữa S và B; giao điểm của hai đường thẳng AC và BD là O
a. Tìm giao điểm của mặt phẳng (CMN) với đường thẳng SO
b. Xác định giao tuyến của hai mặt phẳng (SAD) và (CMN)
Lời giải chi tiết
a. Tìm SO ∩ (CNM)
Trong mặt phẳng (SAC) gọi I là giao điểm của SO với CM
I = SO ∩ CM
\( \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in CM\end{array} \right.\)
mà CM ⊂ (CMN) nên I = SO ∩ (CMN)
b. Tìm (SAD) ∩ (CMN)
Trong mp(SBD) gọi K là giao điểm của NI và SD
K = NI ∩ SD
\( \Rightarrow \left\{ \begin{array}{l}K \in NI \subset \left( {CMN} \right)\\K \in SD \subset \left( {SAD} \right)\end{array} \right. \)\(\Rightarrow K \in \left( {CMN} \right) \cap \left( {SAD} \right)\)
Mà \(M \in \left( {SAD} \right) \cap \left( {CMN} \right)\)
Do đó (SAD) ∩ (CMN) = MK
Bài tập 11 trang 50 SGK Hình học 11 Nâng cao thuộc chương trình học Hình học 11, tập trung vào việc củng cố kiến thức về vectơ và ứng dụng của chúng trong giải quyết các bài toán hình học. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và đặc biệt là các tính chất của vectơ trong các hình bình hành, tam giác.
Thông thường, bài tập 11 trang 50 SGK Hình học 11 Nâng cao sẽ yêu cầu học sinh chứng minh một đẳng thức vectơ, xác định vị trí tương đối của các điểm, hoặc tính độ dài của một đoạn thẳng dựa trên các vectơ đã cho. Bài toán có thể liên quan đến các hình hình học cơ bản như tam giác, hình bình hành, hình chữ nhật, hình vuông, và các khái niệm liên quan đến trung điểm, trọng tâm, đường cao, đường trung tuyến.
Để giải quyết bài toán vectơ một cách hiệu quả, học sinh có thể áp dụng các phương pháp sau:
(Giả sử bài toán cụ thể là: Cho hình bình hành ABCD. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (1/2)overrightarrow{AB} + vectoring{AD})
Ngoài bài tập 11 trang 50, SGK Hình học 11 Nâng cao còn có nhiều bài tập tương tự liên quan đến vectơ và ứng dụng của chúng. Một số dạng bài tập thường gặp bao gồm:
Để học tốt môn Hình học 11, đặc biệt là các bài tập về vectơ, học sinh nên:
Câu 11 trang 50 SGK Hình học 11 Nâng cao là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của chúng trong hình học. Bằng cách nắm vững các phương pháp giải bài toán vectơ và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn học.