Bài toán này thường yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm, hoặc các khái niệm khác đã học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho cấp số nhân (un)
Đề bài
Cho cấp số nhân \(({u_n}) \) có công bội \(q < 0\). Biết \({u_2} = 4\) và \({u_4} = 9\), hãy tìm \(u_1\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số nhân \({u_n} = {u_1}{q^{n - 1}}\)
Lời giải chi tiết
Ta có:
\(\displaystyle \left\{ {\matrix{{{u_2} = 4} \cr {{u_4} = 9} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{u_1}q = 4\left( 1 \right)} \cr {{u_1}{q^3} = 9\left( 2 \right)} \cr} } \right.\)
Lấy (2) chia (1) ta được : \(\displaystyle {q^2} = {9 \over 4} \Rightarrow q = - {3 \over 2}\) (vì \(\displaystyle q < 0\))
Từ (1) suy ra \(\displaystyle {u_1} = {4 \over q} = - {8 \over 3}\)
Bài 31 trang 121 SGK Đại số và Giải tích 11 Nâng cao thường thuộc chương trình học về đạo hàm của hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
(Nội dung đề bài cụ thể sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm đạo hàm f'(x) và xác định các điểm cực trị của hàm số.)
Để giải bài toán này, chúng ta sẽ thực hiện các bước sau:
Giải:
(Lời giải chi tiết, từng bước, có giải thích rõ ràng sẽ được trình bày ở đây. Ví dụ:)
1. Tính đạo hàm f'(x):
f'(x) = 3x2 - 6x
2. Tìm các điểm cực trị:
f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2 là các điểm cực trị của hàm số.
3. Xác định loại cực trị:
f''(x) = 6x - 6
f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.
f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.
Để hiểu rõ hơn về phương pháp giải, chúng ta cùng xét một ví dụ khác:
(Ví dụ minh họa và lời giải chi tiết)
Bài tập tương tự:
Khi giải các bài toán về đạo hàm, học sinh cần chú ý:
Câu 31 trang 121 SGK Đại số và Giải tích 11 Nâng cao là một bài toán điển hình để rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm trong việc tìm cực trị của hàm số. Việc nắm vững kiến thức và phương pháp giải sẽ giúp học sinh tự tin giải quyết các bài toán tương tự trong các kỳ thi.
Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các bạn học sinh đã hiểu rõ hơn về cách giải bài toán này. Chúc các bạn học tập tốt!