Bài toán này thường yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm, hoặc các khái niệm khác đã học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm các giới hạn sau :
\(\displaystyle \mathop {\lim }\limits_{x \to {0^ + }} {{x + 2\sqrt x } \over {x - \sqrt x }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \(\displaystyle x > 0\), ta có : \(\displaystyle {{x + 2\sqrt x } \over {x - \sqrt x }} = {{\sqrt x \left( \sqrt x + 2 \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}} = {{\sqrt x + 2} \over {\sqrt x - 1}}\)
Do đó: \(\displaystyle \mathop {\lim }\limits_{x \to {0^ + }} {{x + 2\sqrt x } \over {x - \sqrt x }} = \mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt x + 2} \over {\sqrt x - 1}} \) \(\displaystyle = {2 \over { - 1}} = - 2\)
\(\displaystyle \mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \(\displaystyle x < 2\), ta có: \(\displaystyle {{4 - {x^2}} \over {\sqrt {2 - x} }} = {{\left( {2 - x} \right)\left( {2 + x} \right)} \over {\sqrt {2 - x} }} \) \(\displaystyle = \left( {x + 2} \right)\sqrt {2 - x} \)
Do đó \(\displaystyle \mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }} \) \(\displaystyle = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 2} \right)\sqrt {2 - x} = 0\)
\(\displaystyle \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với mọi \(\displaystyle x > -1\)
\(\displaystyle {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }} = {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {{x^2}\sqrt {x + 1} }} \) \(\displaystyle = {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}}\)
Do đó \(\displaystyle \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }}\) \(\displaystyle = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}} = 0\)
\(\displaystyle \mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }}\)
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \(\displaystyle -3 < x < 3\)
\(\displaystyle {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {{\sqrt {\left( {3 - x} \right)\left( {4 - x} \right)} } \over {\sqrt {\left( {3 - x} \right)\left( {3 + x} \right)} }}\) \(\displaystyle = {{\sqrt {4 - x} } \over {\sqrt {3 + x} }}\)
Do đó \(\displaystyle \mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {1 \over {\sqrt 6 }} = {{\sqrt 6 } \over 6}\)
Bài toán Câu 28 trang 158 trong sách giáo khoa Đại số và Giải tích 11 Nâng cao thường xoay quanh các chủ đề về hàm số, đạo hàm, hoặc các ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và các kỹ năng giải toán liên quan.
(Nội dung đề bài cụ thể sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x^3 - 3x^2 + 2. Tìm các điểm cực trị của hàm số.)
Để giải quyết bài toán này, chúng ta sẽ áp dụng các bước sau:
(Lời giải chi tiết của bài toán sẽ được trình bày ở đây, bao gồm các bước tính toán và giải thích rõ ràng. Ví dụ:)
Giải:
1. Tập xác định của hàm số y = f(x) = x^3 - 3x^2 + 2 là R.
2. Đạo hàm bậc nhất của hàm số là f'(x) = 3x^2 - 6x.
3. Tìm các điểm cực trị: f'(x) = 0 ⇔ 3x^2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.
4. Đạo hàm bậc hai của hàm số là f''(x) = 6x - 6.
- Tại x = 0, f''(0) = -6 < 0, vậy hàm số đạt cực đại tại x = 0 và giá trị cực đại là f(0) = 2.
- Tại x = 2, f''(2) = 6 > 0, vậy hàm số đạt cực tiểu tại x = 2 và giá trị cực tiểu là f(2) = -2.
5. Vậy hàm số đạt cực đại tại điểm (0, 2) và đạt cực tiểu tại điểm (2, -2).
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Câu 28 trang 158 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng giúp học sinh rèn luyện kỹ năng giải toán về hàm số và đạo hàm. Bằng cách nắm vững các phương pháp giải và thực hành thường xuyên, bạn sẽ tự tin giải quyết các bài toán tương tự trong các kỳ thi và bài kiểm tra.