Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng
Đề bài
Tam giác ABC vuông có cạnh huyền BC nằm trong mp(P), cạnh AB và AC lần lượt tạo với mp(P) các góc β và γ. Gọi α là góc tạo bởi mp(P) và mp(ABC). Chứng minh rằng \({\sin ^2}\alpha = {\sin ^2}\beta + {\sin ^2}\gamma \)
Phương pháp giải - Xem chi tiết
Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
Lời giải chi tiết
Kẻ AH ⊥ mp(P) và AI ⊥ BC.
Khi đó HB là hình chiếu của AB trên (P) nên góc giữa AB và (P) bằng góc giữa AB và HB hay \(\beta = \widehat {ABH}\)
HC là hình chiếu của AC trên (P) nên góc giữa AC và (P) bằng góc giữa AC và HC hay \(\gamma = \widehat {ACH}\)
Lại có:
\(\left\{ \begin{array}{l}AI \bot BC\\AH \bot BC\left( {AH \bot \left( P \right)} \right)\end{array} \right. \) \(\Rightarrow BC \bot \left( {AIH} \right) \Rightarrow BC \bot HI\)
Mà \(BC \bot AI\) và \(\left( {ABC} \right) \cap \left( P \right) = BC\) nên góc giữa (ABC) và (P) bằng góc giữa AI và HI hay \(\alpha = \widehat {AIH}.\) (do \(\widehat {AIH}<90^0\)).
Vì ΔABC vuông ở A nên :
\(\eqalign{ & {1 \over {A{I^2}}} = {1 \over {A{B^2}}} + {1 \over {A{C^2}}} \cr & \Rightarrow {{A{H^2}} \over {A{I^2}}} = {{A{H^2}} \over {A{B^2}}} + {{A{H^2}} \over {A{C^2}}} \cr & hay\,\,{\sin ^2}\alpha = {\sin ^2}\beta + {\sin ^2}\gamma \cr} \)
Câu 4 trang 120 SGK Hình học 11 Nâng cao thuộc chương trình học Hình học lớp 11, tập trung vào việc củng cố kiến thức về vectơ và ứng dụng của chúng trong giải quyết các bài toán hình học. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:
Trước khi bắt tay vào giải, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ cung cấp một hình vẽ hoặc một mô tả về các điểm, đường thẳng, hoặc các yếu tố hình học khác. Nhiệm vụ của học sinh là sử dụng kiến thức đã học để tìm ra các đại lượng cần tính, chứng minh các mối quan hệ, hoặc giải quyết các vấn đề được đặt ra.
Để minh họa, giả sử đề bài yêu cầu:
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: 2MA2 + AB2 + AC2 = 3BC2
Lời giải:
Ngoài bài toán trên, còn rất nhiều dạng bài tập tương tự liên quan đến vectơ và ứng dụng trong hình học. Một số dạng bài tập phổ biến bao gồm:
Để giải các bài tập về vectơ một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn nên luyện tập thêm với các bài tập khác trong SGK và các tài liệu tham khảo. Ngoài ra, bạn có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết và giải đáp thắc mắc.
Câu 4 trang 120 SGK Hình học 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán hình học bằng vectơ. Bằng cách nắm vững kiến thức cơ bản, phân tích đề bài một cách cẩn thận, và áp dụng các mẹo giải bài tập, bạn có thể tự tin giải quyết bài toán này và các bài toán tương tự một cách hiệu quả.