Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Giải các phương trình sau :
\(\tan 3x = \tan {{3\pi } \over 5}\)
Lời giải chi tiết:
\(\tan 3x = \tan {{3\pi } \over 5} \Leftrightarrow 3x = {{3\pi } \over 5} + k\pi \)
\(\Leftrightarrow x = {\pi \over 5} + k{\pi \over 3},k \in\mathbb Z\)
\(\tan(x – 15^0) = 5\)
Lời giải chi tiết:
\(\begin{array}{l}\tan \left( {x - {{15}^0}} \right) = 5\\ \Leftrightarrow x - {15^0} = \arctan 5 + k{180^0}\\ \Leftrightarrow x = {15^0} + \arctan 5 + k{180^0},k \in\mathbb Z\end{array}\)
Cách trình bày khác:
\(\tan(x – 15^0) = 5\)
\(⇔ x = α + 15^0+ k180^0\),
trong đó \(\tan α = 5\) (chẳng hạn, có thể chọn \(α ≈ 78^041’24”\) nhờ dùng máy tính bỏ túi)
\(\tan \left( {2x - 1} \right) = \sqrt 3 \)
Lời giải chi tiết:
\(\eqalign{& \tan \left( {2x - 1} \right) = \sqrt 3 \cr&\Leftrightarrow \tan \left( {2x - 1} \right) = \tan {\pi \over 3} \cr & \Leftrightarrow 2x - 1 = {\pi \over 3} + k\pi \cr&\Leftrightarrow x = {\pi \over 6} + {1 \over 2} + k{\pi \over 2};k \in\mathbb Z \cr} \)
\(\cot 2x = \cot \left( { - {1 \over 3}} \right)\)
Lời giải chi tiết:
\(\cot 2x = \cot \left( { - {1 \over 3}} \right) \)
\(\Leftrightarrow 2x = - {1 \over 3} + k\pi \)
\(\Leftrightarrow x = - {1 \over 6} + k{\pi \over 2},k \in\mathbb Z\)
\(\cot \left( {{x \over 4} + 20^\circ } \right) = - \sqrt 3 \)
Lời giải chi tiết:
\(\eqalign{& \cot \left( {{x \over 4} + 20^\circ } \right) = - \sqrt 3\cr& \Leftrightarrow \cot \left( {{x \over 4} + 20^\circ } \right) = \cot \left( { - 30^\circ } \right) \cr & \Leftrightarrow {x \over 4} + 20^\circ = - 30^\circ + k180^\circ \cr&\Leftrightarrow x = - 200^\circ + k720^\circ ,k \in\mathbb Z \cr} \)
\(\cot 3x = \tan {{2\pi } \over 5}\)
Lời giải chi tiết:
\(\cot 3x = \tan {{2\pi } \over 5}\)
\(\Leftrightarrow \cot 3x = \cot \left( {{\pi \over 2} - {{2\pi } \over 5}} \right)\)\( = \cot \frac{\pi }{{10}}\)
\(\Leftrightarrow 3x = {\pi \over {10}} + k\pi \)
\(\Leftrightarrow x = {\pi \over {30}} + k.{\pi \over 3},k \in\mathbb Z \)
Câu 18 trang 29 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định yêu cầu và các dữ kiện đã cho. Thông thường, bài tập dạng này sẽ yêu cầu:
Giả sử đề bài yêu cầu giải hàm số y = x2 - 4x + 3. Chúng ta sẽ tiến hành giải như sau:
Để giải quyết các bài tập về hàm số bậc hai một cách hiệu quả, bạn cần lưu ý những điều sau:
Hàm số bậc hai có rất nhiều ứng dụng trong thực tế, ví dụ như:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và những lưu ý trên, bạn đã hiểu rõ cách giải Câu 18 trang 29 SGK Đại số và Giải tích 11 Nâng cao. Chúc bạn học tốt!