Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Chứng minh rằng :
\(\cos {\pi \over {{2^3}}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \)
Lời giải chi tiết:
\(\eqalign{ & {\cos ^2}{\pi \over {{2^3}}} = {\cos ^2}{\pi \over 8} = {{1 + \cos {\pi \over 4}} \over 2} = {{1 + {{\sqrt 2 } \over 2}} \over 2} \cr&= {{2 + \sqrt 2 } \over 4} \cr & \Rightarrow \cos {\pi \over {{2^3}}} = {1 \over 2}\sqrt {2 + \sqrt 2 } \cr} \)
\(\cos {\pi \over {{2^n}}} = {1 \over 2}\underbrace {\sqrt {2 + \sqrt {2 + \sqrt {....... + \sqrt 2 } } } }_{n - 1\,\text{ dấu căn}}\) (1) với mọi số nguyên n ≥ 2.
Lời giải chi tiết:
Với n = 2 ta có \(\cos {\pi \over 4} = {1 \over 2}\sqrt 2 \,\,\left( 1 \right)\) đúng.
Giả sử (1) đúng với n = k tức là :
\(\cos {\pi \over {{2^k}}} = {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } \) (k – 1 dấu căn)
Với n = k + 1 ta có
\(\eqalign{ & {\cos ^2}{\pi \over {{2^{k + 1}}}} = {1 \over 2}\left( {1 + \cos {\pi \over {{2^k}}}} \right) \cr & = {1 \over 2}\left( {1 + {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } } \right) \cr & = {1 \over 4}\left( {2 + \sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } } \right) \cr & \Rightarrow \cos {\pi \over {{2^{k + 1}}}} = {1 \over 2}\sqrt {2 + \sqrt {2 + ... + \sqrt 2 } } \,\,\left( {k\,\text{ dấu căn}} \right) \cr} \)
Vậy (1) đúng với n = k + 1 do đó (1) đúng với \(∀n ≥ 2\).
Câu 11 trang 225 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh các bài toán liên quan đến việc khảo sát hàm số bậc ba, bậc bốn. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:
Để minh họa, giả sử câu 11 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2. Chúng ta sẽ tiến hành giải như sau:
Ngoài câu 11 trang 225, học sinh có thể gặp các dạng bài tập tương tự như:
Để giải các bài tập khảo sát hàm số một cách hiệu quả, học sinh nên:
Việc khảo sát hàm số có nhiều ứng dụng trong thực tế, chẳng hạn như:
Học sinh có thể tham khảo thêm các tài liệu sau để nắm vững kiến thức về khảo sát hàm số:
Câu 11 trang 225 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh củng cố kiến thức về khảo sát hàm số. Bằng cách nắm vững các kiến thức cơ bản và thực hành giải nhiều bài tập, học sinh có thể tự tin giải quyết các bài toán tương tự.