Bài toán này thường yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm, hoặc các khái niệm khác đã học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Một cấp số cộng
Đề bài
Một cấp số cộng có năm số hạng mà tổng của số hạng đầu và số hạng thứ ba bằng 28, tổng của số hạng thứ ba và số hạng cuối bằng 40. Hãy tìm cấp số cộng đó.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của CSC: \({u_{k + 1}} + {u_{k - 1}} = 2{u_k}\)
Lời giải chi tiết
Với mỗi \(n \in \left\{ {1,{\rm{ }}2,{\rm{ }}3,{\rm{ }}4,{\rm{ }}5} \right\}\), kí hiệu un là số hạng thứ n của cấp số cộng đã cho.
Ta có:
\(\eqalign{& 28 = {u_1} + {u_3} = 2{u_2} \Rightarrow {u_2} = 14, \cr & 40 = {u_3} + {u_5} = 2{u_4} \Rightarrow {u_4} = 20, \cr & 2{u_3} = {u_2} + {u_4} = 34 \Rightarrow {u_3} = 17. \cr} \)
Ta có:
\(\eqalign{& {u_1} + {u_3} = 28 \Rightarrow {u_1} = 28 - {u_3} = 11 \cr & {u_3} + {u_5} = 40 \Rightarrow {u_5} = 40 - {u_3} = 23 \cr} \)
Vậy cấp số cộng cần tìm là : \(11, 14, 17, 20, 23\)
Bài toán Câu 22 trang 115 trong sách giáo khoa Đại số và Giải tích 11 Nâng cao thường thuộc các chủ đề về đạo hàm, ứng dụng đạo hàm để khảo sát hàm số, hoặc các bài toán liên quan đến giới hạn. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản và kỹ năng giải toán liên quan.
Trước khi đi vào giải chi tiết, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
Để giải quyết bài toán này, bước đầu tiên là đọc kỹ đề bài, xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu:
Sau khi xác định rõ yêu cầu, chúng ta cần phân tích các dữ kiện đã cho trong đề bài để tìm ra phương pháp giải phù hợp.
(Ở đây sẽ là lời giải chi tiết của bài toán, bao gồm các bước giải, giải thích rõ ràng, và kết quả cuối cùng. Ví dụ, nếu bài toán yêu cầu tìm cực trị của hàm số f(x), lời giải sẽ bao gồm các bước sau:)
Để giúp bạn hiểu rõ hơn về cách giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa:
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm cực trị của hàm số.
Lời giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | NB | ĐC | TC |
Vậy hàm số đạt cực đại tại x = 0, yCĐ = 2 và đạt cực tiểu tại x = 2, yCT = -2.
Để củng cố kiến thức và kỹ năng giải toán, bạn nên luyện tập thêm các bài toán tương tự. Bạn có thể tìm thấy các bài tập trong sách giáo khoa, sách bài tập, hoặc trên các trang web học toán online.
Câu 22 trang 115 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng, giúp bạn rèn luyện kỹ năng giải toán và củng cố kiến thức về đạo hàm, ứng dụng đạo hàm. Hy vọng với lời giải chi tiết và ví dụ minh họa trên, bạn đã hiểu rõ hơn về cách giải bài toán này.