Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi đồ thị để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Giải các phương trình sau :
\(3\cos x + 4\sin x = -5\)
Lời giải chi tiết:
Chia hai vế phương trình cho \(\sqrt {{3^2} + {4^2}} = 5\) ta được :
\(\eqalign{& {3 \over 5}\cos x + {4 \over 5}\sin x = - 1 \cr&\Leftrightarrow \cos x\cos \alpha + \sin x\sin \alpha = - 1 \cr & \left( {\text{ trong đó }\,\cos \alpha = {3 \over 5}\text { và }\,\sin \alpha = {4 \over 5}} \right) \cr & \Leftrightarrow \cos \left( {x - \alpha } \right) = - 1 \cr&\Leftrightarrow x - \alpha = \pi + k2\pi \cr & \Leftrightarrow x = \pi + \alpha + k2\pi ,k \in Z \cr} \)
\(2\sin2x – 2\cos2x = \sqrt 2 \)
Lời giải chi tiết:
Chia hai vế phương trình cho \(\sqrt {{2^2} + {2^2}} = 2\sqrt 2 \) ta được :
\(\eqalign{& {1 \over {\sqrt 2 }}\sin 2x - {1 \over {\sqrt 2 }}\cos 2x = {1 \over 2} \cr&\Leftrightarrow \sin 2x\cos {\pi \over 4} - \cos 2x\sin {\pi \over 4} = {1 \over 2} \cr & \Leftrightarrow \sin \left( {2x - {\pi \over 4}} \right) = {1 \over 2} \cr&\Leftrightarrow \left[ {\matrix{{2x - {\pi \over 4} = {\pi \over 6} + k2\pi } \cr {2x - {\pi \over 4} = \pi - {\pi \over 6} + k2\pi } \cr} } \right. \cr&\Leftrightarrow \left[ {\matrix{{x = {{5\pi } \over {24}} + k\pi } \cr {x = {{13\pi } \over {24}} + k\pi } \cr} } \right.,k \in \mathbb Z \cr} \)
\(5\sin2x – 6\cos^2 x = 13\)
Lời giải chi tiết:
\(\eqalign{& 5\sin 2x - 6{\cos ^2}x = 13\cr& \Leftrightarrow 5\sin 2x - 3\left( {1 + \cos 2x} \right) = 13 \cr & \Leftrightarrow 5\sin 2x - 3\cos 2x = 16 \cr} \)
Chia cả hai vế cho \(\sqrt {{5^2} + {3^2}} = \sqrt {34} \) ta được :
\({5 \over {\sqrt {34} }}\sin 2x - {3 \over {\sqrt {34} }}\cos 2x = {{16} \over {\sqrt {34} }}\)
Do \({\left( {{5 \over {\sqrt {34} }}} \right)^2} + {\left( {{3 \over {\sqrt {34} }}} \right)^2} = 1\) nên ta chọn được số \(α\) sao cho :
\(\cos \alpha = {5 \over {\sqrt {34} }}\,\text{ và }\,\sin \alpha = {3 \over {\sqrt {34} }}\)
Ta có: \(5\sin 2x - 6{\cos ^2}x = 13 \)
\( \Leftrightarrow \sin 2x\cos \alpha - \cos 2x\sin \alpha = \frac{{16}}{{\sqrt {34} }}\)
\(\Leftrightarrow \sin \left( {2x - \alpha } \right) = {{16} \over {\sqrt {34} }} > 1\)
Vậy phương trình đã cho vô nghiệm.
Câu 30 trang 41 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, đề bài sẽ yêu cầu:
Để minh họa, giả sử đề bài yêu cầu giải hàm số y = x2 - 4x + 3. Chúng ta sẽ tiến hành giải như sau:
Ngoài câu 30 trang 41, còn rất nhiều dạng bài tập liên quan đến hàm số bậc hai mà học sinh cần luyện tập để nắm vững kiến thức. Một số dạng bài tập phổ biến bao gồm:
Để giải các bài tập về hàm số bậc hai một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Câu 30 trang 41 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc hai. Bằng cách nắm vững các kiến thức cơ bản, phân tích kỹ đề bài và áp dụng các phương pháp giải phù hợp, bạn có thể tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả.
Hy vọng với lời giải chi tiết và các hướng dẫn trên, bạn đã hiểu rõ cách giải Câu 30 trang 41 SGK Đại số và Giải tích 11 Nâng cao. Chúc bạn học tập tốt!