Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Chứng minh rằng
Đề bài
Chứng minh rằng
\({1.2^2} + {2.3^2} + ... + \left( {n - 1} \right).{n^2} = {{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)} \over {12}}\) (1)
Với mọi số nguyên \(n ≥ 2\)
Lời giải chi tiết
+) Với \(n = 2\) ta có:
\({1.2^2} = {{2\left( {{2^2} - 1} \right)\left( {3.2 + 2} \right)} \over {12}} = 4\)
Vậy (1) đúng với \(n = 2\)
+) Giả sử (1) đúng với \(n = k\), tức là ta có :
\({1.2^2} + {2.3^2} + ... + \left( {k - 1} \right){k^2} = {{k\left( {{k^2} - 1} \right)\left( {3k + 2} \right)} \over {12}}\)
+) Ta chứng minh (1) đúng với \(n=k+1\)
Ta có:
\(\eqalign{& {1.2^2} + {2.3^2} + ... + \left( {k - 1} \right).{k^2} + k.{\left( {k + 1} \right)^2} \cr & = {{k\left( {{k^2} - 1} \right)\left( {3k + 2} \right)} \over {12}} + k{\left( {k + 1} \right)^2} \cr & = \frac{{k\left( {k + 1} \right)\left( {k - 1} \right)\left( {3k + 2} \right) + 12k{{\left( {k + 1} \right)}^2}}}{{12}}\cr&= {{k\left( {k + 1} \right)\left[ {\left( {k - 1} \right)\left( {3k + 2} \right) + 12\left( {k + 1} \right)} \right]} \over {12}} \cr & = \frac{{k\left( {k + 1} \right)\left( {3{k^2} - 3k + 2k - 2 + 12k + 12} \right)}}{{12}}\cr& = {{k\left( {k + 1} \right)\left( {3{k^2} + 11k + 10} \right)} \over {12}} \cr & = \frac{{k\left( {k + 1} \right)\left( {3{k^2} + 6k + 5k + 10} \right)}}{{12}}\cr&= {{k\left( {k + 1} \right)\left[ { {3k\left( {k + 2} \right)} + 5\left( {k + 2} \right)} \right]} \over {12}} \cr & = \frac{{k\left( {k + 1} \right)\left( {k + 2} \right)\left( {3k + 5} \right)}}{{12}}\cr& = {{\left( {k + 1} \right)\left( {{k^2} + 2k} \right)\left( {3k + 5} \right)} \over {12}} \cr & = {{\left( {k + 1} \right)\left[ {{{\left( {k + 1} \right)}^2} - 1} \right]\left[ {3\left( {k + 1} \right) + 2} \right]} \over {12}} \cr} \)
Điều đó chứng tỏ (1) đúng với \(n = k + 1\)
Từ các chứng minh trên suy ra (1) đúng với mọi \(n ≥ 2\)
Câu 44 trang 122 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ I, lớp 11. Bài toán này thường liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị, hoặc giải phương trình, bất phương trình chứa dấu giá trị tuyệt đối. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, các quy tắc tính đạo hàm, và các phương pháp xét tính đơn điệu của hàm số.
Trước khi bắt đầu giải bài toán, điều quan trọng là phải đọc kỹ đề bài, hiểu rõ yêu cầu của bài toán. Xác định rõ hàm số cần xét, khoảng xác định của hàm số, và các yêu cầu cụ thể của bài toán (ví dụ: tìm cực trị, xét tính đơn điệu, giải phương trình, bất phương trình).
Đạo hàm của hàm số đóng vai trò quan trọng trong việc giải quyết bài toán này. Tính đạo hàm của hàm số, sau đó xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số. Nếu bài toán yêu cầu tìm cực trị, ta giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị, sau đó xét dấu đạo hàm để xác định loại cực trị (cực đại, cực tiểu).
Có nhiều phương pháp khác nhau để giải quyết bài toán này, tùy thuộc vào dạng bài toán cụ thể. Một số phương pháp thường được sử dụng bao gồm:
Giả sử bài toán yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:
Khi giải bài toán này, cần lưu ý một số điểm sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài toán, bạn có thể tham khảo các bài tập tương tự trong SGK Đại số và Giải tích 11 Nâng cao, hoặc trên các trang web học toán online khác.
Câu 44 trang 122 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm. Bằng cách nắm vững các kiến thức cơ bản và áp dụng các phương pháp giải quyết bài toán phù hợp, bạn có thể tự tin giải quyết bài toán này một cách hiệu quả.